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Part 1:

Introduction



Kap Hwan Kim · Hans-Otto Günther 

Container terminals and terminal 
operations

1  Container traffic 

Over the recent years, the use of containers for intercontinental maritime transport 
has dramatically increased. Figure 1 exhibits the growth of world container turn-
over. Starting with 50 million TEU (twenty feet equivalent unit) in 1985 world 
container turnover has reached more than 350 million TEU in 2004. A further 
continuous increase is expected in the upcoming years, especially between Asia 
and Europe. 

Since their introduction in the 1960s containers represent the standard unit-load 
concept for international freight. Transhipment of containers between different par-
ties in a supply chain involves manufacturers producing goods for global use, freight 
forwarders, shipping lines, transfer facilities, and customers. Container terminals 
primarily serve as an interface between different modes of transportation, e.g. do-
mestic rail or truck transportation and deep sea maritime transport. As globally act-
ing industrial companies have considerably increased their production capacities in 
Asian countries, the container traffic between Asia and the rest of the world has 
steadily increased (cf. Wang (2005)). For instance, from 1990 to 1996 total con-
tainer traffic volume between Europe and Asia doubled, whereas in the same period 
total container flow between Europe and the Americas went up by only 10%.  

A few facts highlight the ever increasing importance of maritime container 
transportation (cf. Brinkmann (2005), Lee and Cullinane (2005), and Steenken et 
al. (2004)).
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Fig. 1  Development of world container turnover (Unit: million TEU)  
(Source: www.hafen-hamburg.de/en/index.php?option=com_content&task=view&id=96& 

Itemid=126; visited on June 2, 2006) 

Since regular sea container services began 1961 with routes between the East 
Coast of the United States and ports in Central and South America, the fraction 
of container transportation in the world’s deep-sea cargo rose to more than 
60%. Some major maritime freight routes are even containerized up to 100%. 
The transportation capacity of the worldwide container fleet has almost dou-
bled during the past 10 years. At the same time, the transportation capacity 
of a single vessel rose steeply, culminating in the recent generation of 10,000 
TEU container vessels. 
While the worldwide gross national product increased from 1990 to 2003 by 
about 50%, world container turnover tripled in the same period. 
In 1997 as much as 93.7% of the piece goods handled in the port of Ham-
burg were packaged in containers. 

As a consequence, the number and capacity of seaport container terminals 
increased considerably, although investments for deep-sea terminals and the 
related infrastructure expansions almost reach one billion EURO, as it is reported 
from the latest deep-sea container terminal project at Wilhelmshafen, Germany. At 
the same time, there is an ongoing trend in the development of seaport container 
terminal configurations to use automated container handling and transportation 
technology, particularly, in countries with high labour costs. Hence, manually driven 
cranes are going to be replaced by automated ones and often automated guided 
vehicles (AGVs) are used instead of manually operated carts.  

Driven by huge growth rates on major maritime container routes, competition 
between container ports has considerably increased. Not only handling capacities 
of container terminals worldwide got larger and larger. Moreover, significant 
gains in productivity were achieved through advanced terminal layouts, more 
efficient IT-support and improved logistics control software systems, as well as 
automated transportation and handling equipment. For instance, in the port of 
Singapore, container turnover per employee quintupled from 1987 to 2001. 
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In the scientific literature container terminal logistics have received increasing 
interest. Many papers have been published dealing with individual strategic, op-
erational and control issues of seaport container terminals. Recent overviews can 
be found in Vis and de Koster (2003), Steenken et al. (2004), Murty et al. (2005), 
Kim (2005) as well as Günther and Kim (2005).  

2  Container terminal operations 

Although seaport container terminals considerably differ in size, function, and 
geometrical layout, they principally consist of the same sub-systems (see Figure 2). 
The ship operation or berthing area is equipped with quay cranes for the loading 
and unloading of vessels. Import as well as export containers are stocked in a yard 
which is divided into a number of blocks. Special stack areas are reserved for 
reefer containers, which need electrical supply for cooling, or to store hazardous 
goods. Separate areas are used for empty containers. Some terminals employ 
sheds for stuffing and stripping containers or for additional logistics services. The 
truck and train operation area links the terminal to outside transportation systems. 

The chain of operations for export containers can be described as follows (see 
Figure 3). After arrival at the terminal by truck or train the container is identified 
and registered with its major data (e.g. content, destination, outbound vessel, ship-
ping line), picked up by internal transportation equipment and distributed to one of 
the storage blocks in the yard. The respective storage location is given by row, 
bay, and tier within the block and is assigned in real time upon arrival of the con-
tainer in the terminal. To store a container at the yard block, specific cranes or 
lifting vehicles are used. Finally, after arrival of the designated vessel, the container 
is unloaded from the yard block and transported to the berth where quay cranes 
load the container onto the vessel at a pre-defined stacking position. The opera-
tions necessary to handle an import container are performed in the reverse order. 

Fig. 2  Operation areas of a seaport container terminal and flow of transports 
(Source: Steenken et al. (2004), p. 6) 
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Fig. 3  Transportation and handling chain of a container 
(Source: Steenken et al. (2004), p. 13) 

Scheduling the huge number of concurrent operations with all the different types 
of transportation and handling equipment involved is an extremely complex task. 
In view of the ever changing terminal conditions and the limited predictability of 
future events and their timing, this control task has to be solved in real time.  

Seaport container terminals greatly differ by the type of transportation and hand-
ling equipment used. Regarding quay cranes, single or dual-trolley cranes can be 
found. The latter employ an intermediate platform for buffering the loaded or 
unloaded container. The most common types of yard cranes are rail-mounted gantry 
(RMG) cranes, rubber-tired gantry (RTG) cranes, straddle carriers, reach stackers, 
and chassis-based transporters. Of these types of cranes only RMG cranes are suited 
for fully automated container handling. Figure 4 exhibits the working principle of 
the different types of handling equipment and their comparative performance figures 
with respect to the number of TEUs, which can be stored per hectare.

Fig. 4  Different types of handling equipment 
(Source: www.kalmarind.com; visited on January 2, 2006) 
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Different types of vehicles can be used both for the ship-to-yard transportation and 
the interface between the yard and the hinterland. The most common types are 
multi-trailer systems (MTS) with manned trucks, automated guided vehicles 
(AGVs), and automated lifting vehicles (ALVs). The latter ones, in contrast to 
AGVs, are capable of lifting a container from the ground by themselves (cf. Vis 
and Harika, 2004; Yang et al., 2004). However, despite their superior handling 
capabilities ALVs have not yet gained widespread use in container terminals. 

3  Planning and logistics control issues of container terminals 

A container terminal represents a complex system with highly dynamic inter-
actions between the various handling, transportation and storage units, and incom-
plete knowledge about future events. There are many decision problems related to 
logistics planning and control issues of seaport container terminals. These prob-
lems can be assigned to three different levels as shown in Figure 5: terminal de-
sign, operative planning, and real-time control. In the following a brief overview 
of these planning and control levels and their relationship to the various kinds of 
terminal equipment is given. 

Terminal design problems have to be solved by facility planners in the initial 
planning stage of the terminal. These problems have to be analyzed both from an 
economic as well as a technical feasibility and performance point of view. In par-
ticular, construction of a completely new terminal site and the use of automated 
equipment require huge investments. From the various design problems, only 
the most important ones shall be highlighted. For a more detailed overview see 
Steenken et al. (2004). 

Multi-modal interfaces: In contrast to their Asian counterparts, most Euro-
pean container terminals are laid out as multi-modal facilities, i.e. they are 
directly linked to railway, truck and inland navigation systems. The integra-
tion of these different modes of transportation has a major impact on the de-
sign of the entire terminal. 

Operative
planning

Real-time
control

Yard trucks,
AGVs

Yard cranes Quay cranes Berths VesselsHinterland

Terminal
design

Storage
blocks

Multi-modal
interfaces

Terminal
layout

Equipment
selection

Berthing
capacity

IT-systems and
control software

Crane
assignment and

split

Berth
allocation

Stowage
planning

Landside
transport

Quayside
transport

Slot
assignment

Crane scheduling and
operation sequencing

Storage and
stacking
policies

Fig. 5  Logistics planning and control issues in seaport container terminals
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Terminal layout: The storage yard, transportation guide paths, and quays 
represent the major entities of each container terminal. Their capacity and 
spatial arrangement heavily determine the performance of the terminal con-
figuration. Terminal layout also includes the reservation of certain areas for 
reefer or hazardous goods containers, empty containers or non-standard-size 
containers. 
Equipment selection: Different types of equipment can be used for handling 
and transportation within the terminal. They primarily differ by their degree 
of automation and their performance figures. Currently, there is an ongoing 
trend to make increased use of automated storage cranes und driverless vehi-
cles, although these types of equipment raise complex logistics control prob-
lems. 
Berthing capacity: The global performance factor of a container terminal is 
given by its seaside dispatching capacity. The berthing capacity not only de-
termines the number and size of the vessels that can be served, but also the 
requirements for storage yard space and the fleet size of vehicles etc.  
IT-systems and control software: Finally, logistics control in large-sized con-
tainer terminals is a tremendously complex task, which requires real-time 
decisions on matching handling tasks with the corresponding equipment 
units and the provision of detailed information about each individual con-
tainer. Different modes of software and IT support as well as use of sophisti-
cated optimization tools are issues of considerable importance. 

The level of operative planning (cf. Steenken et al. (2004)) comprises guidelines 
and basic planning procedures for performing the various logistic processes at the 
terminal. Since decentralized planning is the only realistic mode to govern logis-
tics control of automated container terminals, the entire logistics control system is 
subdivided into various modules for the different types or groups of resources. 
Hence, specific issues arise in planning and scheduling the use of key resources 
for a short-term planning horizon of several days or weeks. 

Berth allocation: Before arrival of a ship, the required berthing space has to 
be allocated taking the prospective time the ship spends in the terminal into 
account. Additional constraints arise from the availability of cranes and the 
berthing and crane requirements of other vessels which already moor at the 
quay or are expected to arrive shortly. 
Crane assignment and split: To load and unload a large container vessel, se-
veral quay cranes are used. First it has to be decided which individual cranes 
are to be assigned to the various ships considering the accessibility of cranes 
at the berth and the impossibility to exchange cranes between different 
berths at the terminal. Second the cranes operating at one ship have to be as-
signed to different sections or hatches of the ship. 
Stowage planning and sequencing: Shipping lines have to decide which po-
sitions within the ship are assigned to specific categories of containers con-
sidering container attributes such as destination, weight or type of the con-
tainer. Based on this given assignment, the terminal operator decides which 
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individual container has to be stored at the specific slots within the vessel. 
This final slot-assignment heavily affects the loading and unloading se-
quence of containers. Based on the stowage plan, planners in container ter-
minals determine the sequence of unloading inbound containers and of load-
ing outbound containers. For the outbound containers, in addition to the 
loading sequence for individual containers, the slot in the vessel into which 
each outbound container will be stacked must be determined at the same 
time. The unloading and loading sequences represent a major input for de-
termining the yard crane’s and vehicle’s schedules�
Storage and stacking policies: Large container terminals in Europe store a 
total of several 10,000 containers with average dwell times of 3-5 days and 
daily turnover of 10-20,000 containers. The storage area is separated into 
blocks, which are organized into bays, rows and tiers. Policies for assigning 
individual storage locations and stacking of containers are ruled by the objec-
tive to expedite the necessary storage and retrieval operations as far as possible 
and to avoid reshuffling of containers within the block. Specific issues include 
the reservation of dedicated storage areas for import and export containers and 
the planning of remarshalling operations for stacked containers. 
Workforce scheduling: Workforce is another important resource in container 
terminals. Rosters and schedules for workers to operate equipment must be 
generated in advance. �

Container terminals represent highly dynamic and highly stochastic logistics sys-
tems, which do not allow pre-planning of detailed transportation and handling 
activities for a look-ahead horizon of more than 5-10 minutes. Hence, real-time 
control of logistics activities is of utmost importance. Real-time control (or real-
time planning) is usually triggered by certain events or conditions and requires that 
the underlying decision problem is solved within a very short time span, in practice 
usually within less than a second. Real-time decisions include the assignment of 
transportation orders to vehicles and routing and scheduling the vehicle trips for 
landside transportation as well as for transportation between the berth and the stor-
age yard, the assignment of storage slots to individual containers, and the determina-
tion of detailed schedules and operation sequences for quay and stacking cranes.  

4  Overview of the book 

Apart from this introductory section, this book is divided into two further Parts 2 
and 3. The subsequent Part 2 focuses on seaport container terminals while the final 
Part 3 considers other types of cargo systems, e.g. vehicle distribution, air and 
maritime cargo systems as well as issues of revenue management and collabora-
tion between forwarding enterprises. 

Part 2 comprises eleven papers on seaport container terminals. Due to the 
complexity of automated container terminals, highly sophisticated control strate-
gies are needed for the operation and control of the equipment. In addition, the 
design and the performance analysis of terminal configurations are issues of major 
practical importance.  
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The first paper by J.A. Ottjes, H.P.M. Veeke, M.B. Duinkerken, J.C. Rijsenbrij 
and G. Lodewijks presents a generic simulation model structure for the design and 
evaluation of multi-terminal systems. The authors apply their modelling approach 
to the existing and the future terminals in the Rotterdam port area. Experimental 
results show the requirements for deep-sea quay lengths, storage capacities, and 
equipment for inter-terminal transport. 

A simulation study to compare three different transportation systems for the 
overland transport of containers between container terminals is presented in the 
paper by M.B. Duinkerken, R. Dekker, S.T.G.L. Kurstjens, J.A. Ottjes and N.P. 
Dellaert. The simulation model is applied to a realistic scenario taken from the 
Rotterdam port area. The numerical results give insight into the different charac-
teristics of the transport systems and their interaction with the handling equipment. 

In the subsequent paper, R. Moorthy and C.-P. Teo analyse the home berth 
problem, i.e. the preferred berthing location for a set of vessels scheduled to call at 
the container terminal on a weekly basis. They model this problem as a rectangu-
lar packing problem on a cylinder and use a sequence pair based simulated anneal-
ing algorithm to solve the problem. Extensive computational studies show the 
efficiency of the proposed modelling approach. 

In their paper, E. Kozan and P. Preston model the seaport terminal system with 
the objective of determining the optimal storage strategy and container-handling
schedule. They present an iterative search algorithm that integrates a container-
transfer with a container location model in a cyclic fashion to determine both 
optimal locations and corresponding handling schedules. Results are analysed and 
compared with current practise at an Australian port. 

A mixed-integer linear programming model for storage yard management in 
transhipment hubs is presented by L.H. Lee, E.-P. Chew, K.C. Tan and Y. Han. To 
solve large-sized problem instances, two heuristic solution procedures are devel-
oped. The first is a sequential method while the second is based on column gen-
eration. Finally, it is shown that the heuristics find near-optimal solutions in a 
reasonable amount of time. 

Stacking policies for containers at an automated container terminal are addressed 
by R. Dekker, P. Voogd and E. van Asperen. They provide a comprehensive over-
view of stacking policies used in practise. Specifically, they consider several vari-
ants of category stacking, where containers can be exchanged during the loading 
process. In a numerical study, different stacking policies are compared. 

The next paper by E.K. Bish, F.Y. Chen, Y.T. Leong, B.L. Nelson, J.W.C. Ng and
D. Simchi-Levi analyses discharging and uploading operations of containers to and 
from ships. Specifically, the authors address the dispatching of vehicles to con-
tainers so as to minimize the service time (makespan) of a ship. To solve this 
problem they develop heuristic dispatching algorithms that generate optimal or 
near-optimal solutions. 

In the paper by M. Grunow, H.-O. Günther and M. Lehmann strategies for dis-
patching Automated Guided Vehicles (AGVs) at automated seaport container termi-
nals are analysed and evaluated using a scalable simulation model. The authors 
develop a so-called pattern-based heuristic which utilizes the dual-load capability of 
AGVs. Results of the simulation study reveal that this heuristic outperforms conven-
tional dispatching heuristics known from flexible manufacturing systems. 
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Another type of dispatching strategies for AGVs is proposed by D. Briskorn,
A. Drexl and S. Hartmann. They present an alternative formulation of the job-
vehicle assignment problem which is based on a rough analogy to inventory man-
agement. In a simulation study, it is shown that the inventory-based model leads to 
better productivity of the terminal than the due-time-based model formulation.  

In automated container terminals, situations occur where different equipment 
units directly or indirectly request each other to start a specific process. Hence, all 
of the affected resources are involved in a deadlock. M. Lehmann, M. Grunow and
H.-O. Günther develop different methods for the detection and resolution of dead-
locks occurring in the resource-assignment phase. The suitability of these methods 
is shown in a comprehensive simulation study. 

Another type of deadlocks arising in the traffic control of AGVs in seaport 
container terminals is investigated by K.-H. Kim, S.M. Jeon and K.R. Ryu. They 
develop an efficient deadlock prediction and prevention algorithm Their approach 
guarantees deadlock-free reservation schedules of grid blocks in the guide path for 
AGVs to cross the same area at the same time. The proposed method was tested in 
a simulation study. 

Part 3 comprises six papers on different types of cargo systems. The first paper 
by D.C. Mattfeld and H. Orth addresses the planning of transportation and storage 
capacity over time. They consider intermodal transhipment terminals used for the 
import and export of large volumes of automotives and develop an evolutionary 
algorithm for determining a period-oriented capacity utilization strategy. As a 
result, a balanced distribution of vehicle movements over the periods of the plan-
ning horizon is achieved. 

The next paper by H. C. Huang, C. Lee and Z. Xu considers a large air cargo 
handling facility composed of two identical cargo terminals. To balance the work-
load between the two terminals, a stochastic mixed-integer linear programming 
model is developed and efficiently solved. The simulation results based on data 
from a large international air port show that the proposed algorithms effectively 
balance the workload and the cargo service time is considerably reduced. 

In their paper, D. Li, H.-C. Huang, A.D. Morton and E.-P. Chew develop an in-
tegrated model for incorporating the cargo routing problem into fleet assignment. 
Their solution approach is based on Benders decomposition and simultaneously 
determines the optimal assignment of fleets (types of airplanes) to flight-legs and the 
routing of cargo over the network within reasonable amount of computational time. 

A mathematical programming based approach for revenue management in 
cargo airlines is the topic of the paper by P. Bartodziej, U. Derigs and M. Zils.
Their approach deals with making capacity reservations for expected cargo de-
mand over a certain period of time, e.g. a year, so as to maximize the expected 
profit contribution. As the number of booking request per week for a major cargo 
airline is extremely large, an issue of considerable practical importance is to an-
swer customer enquiries in near real-time.  

The paper by L.H. Lee, E.-P. Chew and M.S. Sin also deals with issues of 
revenue management. They show that, in a sea cargo application, the optimal 
policy to allocate the capacity of a ship is a threshold policy, i.e. to base decisions 
on the acceptance of customer orders on the remaining capacity of the ship. An 
efficient heuristic procedure is proposed to solve this problem. 
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The final paper by M.A. Krajewska and H. Kopfer presents a model for col-
laboration among independent freight forwarding enterprises. Their model is 
based on theoretical foundations of combinatorial auctions and game theory. They 
show that through their collaboration model additional profit for a coalition of 
freight forwarders and for each participant can be gained. Therefore, the proposed 
model provides a useful basis for developing application-specific profit sharing 
mechanisms in the freight forwarding business. 

5  Final remarks 

The primary objective of this book is to reflect recent developments in design, 
operations management and logistics control of automated container terminals and 
cargo systems and to examine related research issues of quantitative analysis and 
decision support. It comprises reports on the state of the art, applications of 
quantitative methods, as well as case studies and simulation results. Seventeen 
papers previously published in “OR Spectrum – Quantitative Approaches in 
Management” have been selected for publication in this volume. All papers have 
been peer-reviewed according to the standards of the journal. 

This book has greatly benefited from the cooperation among the authors, re-
viewers, and editors. We would like to express our sincere thanks to the reviewers 
for their excellent and timely refereeing. Last, but not least, we thank all the au-
thors for their contributions which made this book possible. 
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Simulation of a multiterminal system
for container handling

Abstract A generic simulation model structure for the design and evaluation of
multiterminal systems for container handling is proposed. A model is constructed
by combining three basic functions: transport, transfer, and stacking. It can be used
for further detailing of the subsystems in the terminal complex while preserving the
container flow patterns in the system. The modeling approach has been applied to
the complete set of existing and future terminals in the Rotterdam port area, using
forecasts of containers flows, statistical data from existing terminals, expert
opinions, and conceptual designs of the new port area called “second Maasvlakte”.
Experimental results including the requirements for deep-sea quay lengths, storage
capacities, and equipment for interterminal transport are shown. Further traffic
flows on the terminal infrastructure are determined, and the consequences of
applying security scanning of containers are evaluated.

Keywords Container terminal . Simulation . Process interaction method .

Strategic . Conceptual design

1 Introduction

Container terminals play an important role as a node in many supply chains. A
container terminal is an area for container transshipment between various transport
modalities. The main modalities are deep-sea, short-sea, inland waterway, road,
and rail. Container flows worldwide are growing very rapidly and it is expected
that this growth will continue during the next decades. A new generation of deep-
sea container vessels, with a capacity of 8,000–10,000 “20-ft container equivalent
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units” (TEU), is coming. Even larger vessels are under development. These
developments urge container main ports to reconsider their equipment and logistics
or even to expand.

Recently, the Dutch government decided to extend the Rotterdam port area with
the so-called “second Maasvlakte” (MV2) to be reclaimed from the North Sea. This
area will be mainly used for container handling and it is anticipated that a number
of container terminals will be established on it. We will call this a “multiterminal.”
The question to be answered is how to arrange these terminals. One theoretical
option is to have a number of autonomous deep-sea terminals, owned by different
parties, each facilitating all necessary modalities. These are called “compact”
terminals. Another possibility is to aim at functional specialization per modality.
This would imply separate terminals for deep-sea, rail, barge, and truck handling.
These are called “dedicated” terminals. Between these two extremes, there are
numerous mixed multiterminal configurations possible. Each multiterminal will
need transportation facilities between the individual terminals, the so-called
interterminal transport (ITT).

A research project has been carried out with the main objective to evaluate
conceptual multiterminal designs for the second Maasvlakte, including inter-
terminal transport systems, in coherence with the existing terminals on the first
Maasvlakte (MV1). It is assumed that both intra- and interterminal transport will
take place with automated guided vehicles (AGV). An AGVautonomously drives
to its destination, but needs an external device for loading and unloading a
container.

This paper covers the first part of the research project, concerning a strategic
logistic simulation study of the complete set of existing and planned future
terminals in the Rotterdam Maasvlakte area to support the design activities for
MV2. The research goal of this study is to determine, for a number of conceptual
multiterminal designs, the requirements with respect to the number of AGVs, the
capacity of the interterminal transport infrastructure, the sea berth length, the
stacking capacity, and the influence of safety measures. It was decided to use
simulation to be able to deal with stochastic effects already in the early design
stage. In a later phase of the design process, detailed studies on subsystems like
individual terminals and the interterminal transport of containers are anticipated.
Therefore, the simulation model should be developed in such a way that it is
reusable as a common basis for the parallel development of detailed submodels and
can be used as a consistent input framework for the submodels.

This paper is organized as follows: In “Container terminals,” we analyze the
problem under investigation and formulate the research demands. “Container
terminal modeling” presents the model framework, and “Model construction”
discusses the model construction. “Modeling the Maasvlakte terminals” describes
the application of the model and a selection of the results. “Results” contains
conclusions and future research topics.

2 Container terminals

In this section, some typical container-terminal related issues will be analyzed, and
the research question will be formulated.
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2.1 Push and pull

In main port container terminals, all activities are concentrated on serving deep-sea
vessels. These vessels are unloaded and loaded with high priority. The unloaded
containers (the “import” containers) are distributed over the hinterland, and the
containers to be loaded (the “export” containers) are collected from the hinterland.
Consequently, the unloading and loading process sets the pace for all other logistic
activities on the terminal. Logistically speaking, a vessel “pushes” its import load
onto the terminal and it “pulls” its export load from the terminal. This push–pull
mechanism will be the basis for the model. We call the deep-sea container flow the
“originating” flow. All other flows to and from the terminal are related to this
originating flow and will be called “derived” flows. A distinction is made between
short-sea feeder services and autonomous short-sea shipping. Containers from
feeders are counted to be derived, and containers of autonomous short-sea ships are
considered originating.

The handling capacity of a main port container terminal primarily depends on
the number and capacity of deep-sea quay cranes available. In general, the quay
length should never be a restriction to the timely serving of deep-sea vessels. The
terminal storage (stacking) capacity, the interterminal transport capacity, and
landside handling capacities are to be derived from the deep-sea capacity and
should not delay the deep-sea handling process.

Fig. 1 The variation of the stack contents as a result of a visit of one deep-sea ship
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2.2 Dwell times

Both import and export containers are usually stored temporarily in a “marine
stack” close to the deep-sea quay area. On the landside, for similar reasons, smaller
decoupling stacks are used, for example, in rail service centers (RSC) and barge
service centers (BSC). Consequently, a container may reside in one or more
successive stacks during its stay on a container terminal.

We define “dwell time” as the total time a container spends in one or more
terminal stacks. Several factors may influence container dwell times, such as time
tables and availability of hinterland connections, the influence of custom
regulations, and typical supply-chain related influences, such as the time the
container owner decides to fetch his imported containers or to supply his containers
for export. In the current practice, dwell times are in the order of days. The average
stacking space needed is linearly proportional to the average container dwell time
[12]. The stack capacity needed, however, can be temporarily much higher than the
average value. One of the main causes is the incidental overlap of deep-sea ships
that are handled (so-called “clashing”). One ship gives a peak in stack contents as
shown in Fig. 1.

In traditional design practice, the stack capacity needed is determined by
calculating the average capacity and multiplying that with a peak factor. Rule of
thumb values of the peak factor used vary from 1.2 to 1.3. The influence of the new
generation of container vessels and intensive interterminal transport on peak factors
is not yet known.

2.3 Modal split and interterminal transport

Import containers are distributed over the hinterland via the landside modalities or
even back to deep-sea vessels. Export containers are collected from hinterland
locations and arrive with various transport modalities. This phenomenon is called
“modal split.” Modal split demands imply that containers may have to be
transported between modalities and stacks and even between different stacks
during their stay on the multiterminal complex. This results in interterminal
transport to be carried out by AGVs. For design purposes, the peak number of
AGVs in use and the resulting traffic flows are particularly essential.

2.4 Security activities

In the Rotterdam container terminals, the so-called “container scan” procedure has
been introduced. Each container terminal should be prepared to send a random part
of its container flow via an X-ray scanner that is able to detect illegal or dangerous
cargo. This will result in extra handling and transport activities and, consequently,
more AGVs will be required.
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2.5 Research question

The research question is defined as follows:
Determine for a number of conceptual multiterminal designs the averages and

peak values of:

– The occupation of the deep-sea quays
– The number of AGVs for interterminal transport
– The storage capacity of the stacks
– The traffic flows on the interterminal infrastructure
– The influence of security-related extra handling and transport of a part of the

total container flow

The model structure should be suitable to represent any multiterminal
configuration and allow further integrated detailed studies. It should be reusable
as common basis for the parallel development of detailed submodels and as a
consistent input framework for the submodels.

3 Container terminal modeling

After reviewing related literature, we propose a general concept for modeling
multiterminal systems and discuss the modeling technique used for constructing
the model.

3.1 Literature review

Many studies concerning container terminals focus on specific parts of the terminal
such as yard operations [9], berth scheduling [11, 15], or dispatching of AGVs [10].
Other works relate to the evaluation of container terminals at an aggregate level,
using simulation [13, 15, 24]. In [16], some probable consequences of the
introduction of large container ships on the landside infrastructure are discussed.
Extensive literature reviews on container terminal characteristics and classification
of container terminal research are given in [17] and [18]. Subjects discussed
include terminal logistics, storing and stacking logistics and optimization methods,
transport optimization, and simulation systems. The conclusion is that, until now,
the focus has been on optimizing several separate parts of the logistic chain of a
container terminal and that there is a need for integrated optimization [18]. Also an
approach is proposed to apply simulation at various levels of detail in the entire
process of terminal design [17]. The first step here is the functional design in which
the required number of quay cranes, quay length, and stacking capacity is to be
determined. The advantage of using simulation already in the strategic stage is the
fact that stochastic aspects can be taken into account. In [19], the process
interaction modeling approach has been used to support the design process at all
stages. This approach allows the expansion of the model from the initial functional
level to a detailed operational level. Though relevant literature can be found
regarding design and control of container terminals, no work was found about the
integrated design and evaluation of a complex of interacting terminals.
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3.2 Modeling concept

A single container is taken as the load unit and the individual means for transport,
transshipment, and stacking are taken as equipment units. We abstract from the
physical view to a functional view of handling containers [8]. Each type of
container handling can be modeled—both aggregated and in detail—by a
composition of three elementary functions:

1. A transport function for transporting containers
2. A transfer function for transshipping containers
3. A stacking function for storing containers

The relationships between the three elementary functions are shown in Fig. 2.
For each container, at least one transfer function must be executed. A transfer

function can be coupled to both transport and stack functions. For example, a set of
quay cranes (transfer function) can be coupled to an AGV system (transport
function); a set of stacking cranes (transfer function) can be coupled to a stack area
(stack function). The loads of ships, trains, trucks that supply or collect containers
are represented by a stack function that is temporarily coupled with a transfer
function.

Any container terminal can be represented by a composition of connected
elementary functions. In Fig. 3, a compact terminal is shown, modeled with the
elementary functions. On the sea quayside, a transfer function resembles the quay
cranes that load and unload sea ships, while on the landside trains, trucks, barges,
and interterminal transport are handled. One central stack serves all modalities. In
terms of production logistics there is a resemblance to dedicated cell production
[23]. The theoretical benefits are a reduction of order lead time, less work in
progress, lower material handling costs, and simplified planning and control
procedures.

Figure 4 shows a dedicated deep-sea terminal and a dedicated rail terminal or
rail service center (RSC) connected by the interterminal transport function. Each

Transfer

Transport

Stack

Container on arriving 
modality

Container on departing
modality

Fig. 2 Relationships between elementary functions
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terminal has its own operational structure. Both the deep-sea terminal and the RSC
need a stack and a transfer function to (un)load ITT AGVs. Advantages are
flexibility and efficient use of equipment and a higher container throughput per
hectare compared to the compact configuration. A disadvantage will be increased
interterminal transport. In terms of production logistics, this configuration is related
to “job shop” production.

Fig. 3 A fully equipped terminal called “compact” terminal
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Fig. 4 A “dedicated” deep-sea terminal and a “dedicated” rail terminal (RSC) interconnected via
interterminal transport
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3.3 Modeling technique

In this work, the “process interaction method” is used, which is a combination of
event scheduling and activity scanning [4, 25]. It consists of identifying the system
elements and describing the sequence of actions for each one. The process
interaction method can be summarized as follows: (1) decompose the system into
relevant element classes, preferably patterned on its real world structure. An
element class is characterized by its attributes. The state of each instance of a class
is defined by the state or value of its attributes. (2) Determine the “living” element
classes and assign a process description to these classes, making use of simulation-
time consuming commands like “work, wait, drive, suspend” and “standby.” A
process governs the behavior of each instance of the element class. The simulation
package applied has to take care of the proper sequencing of all scheduled time
periods.

The process interaction approach allows defining processes initially at just the
functional level and refining these processes toward both tactical and operational
levels, using the same model framework [19]. Simulating at the functional level has
the advantage that stochastic influences can be taken into account to obtain
statistics about traffic flows, stacking volumes, and equipment capacities needed
for initial design purposes. At the tactical and operational levels, optimization and
control algorithms can be implemented and tested in the integral simulation
environment using a consistent input. Here, choices about what type of equipment
to use have to be made. Interterminal transport can be executed in many ways, for
example, using straddle carriers, multitrailers, single or multiloaded automated
guided vehicles and automated lifting vehicles [6, 14].

Process interaction modeling has a near-resemblance to object-oriented
modeling, in which procedures and functions called “methods,” besides attributes,
are owned by object classes. In this sense, the process description of an element
class is a method of the class. The first language applying process interaction is
“Simula” [1]; two recent tools are Silk [7] and Tomas [19, 20].

4 Model construction

In this section, we will explain the construction of the model in terms of the process
interaction approach. After describing the elementary functions, the modeling of
the deep-sea ships with containers will be discussed.

4.1 Modeling the elementary functions

A transport function is represented by a “transport system” owning a set of
“transporters.” A transfer function is represented by a “transfer system” owning a
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set of “transfer units.” The element class definitions with the main attributes and
the processes are described in pseudo-code. The element classes and attributes are:

TransportSystem
–MyTransporters Set with all transporters
–AvailableTransporters Set with available transporters
–MyTransferSystems Set of Linked Transfer Systems
–ContainersToTransport Set with containers to be transported
–TRANSPORTER_
AVAILABLE

Method: allocates or creates transporter

–PROCESS Method: describes activities as a function of time
Transporter
–MyTransportSystem Referenceto Transport system
–ContainerToTransport Assigned container to transport
–Destination Final Destination of a transport job
–Route Set of route points to destination Arrival time at next route point
–ArrivalTime Arrival Time at next route point
–PROCESS Method: describes activities as a function of time
TransferSystem
–MyTransferUnits Set with all transfer units
–AvailableTransferUnits Set with available transferunits
–MyTransportSystems Set with linked transport systems
–MyStacks Set with linked stacks
–TRANSFERUNIT_
AVAILABLE

Method: allocates or creates Transfer unit

–PROCESS Method: describes activities as a function of time
TransferUnit
–MyTransferSystem Reference to Transfer System
–ContainerToTransfer Assigned container to be transferred
–PROCESS Method: describes activities as a function of time

The stack function is represented by a “stack system”with a set of “stack units.”
A stack system is always connected to at least one transfer system. The main

task of the stack system is to keep containers. In the model, the stack function is
further used to monitor and keep guard over the containers it has in store. As soon
as a container has reached the end of its dwell time, a transfer request for that
container is issued via the stack system to the proper transfer system, taking into
account the transfer capacity of the receiving transfer system. Both transport and
transfer systems have their own set of equipment units to carry out their tasks. In
the MV2 case, the transport units or transporters are automated guided vehicles and
transfer units are quay cranes or stacking cranes. There are two possibilities. (1)
The number of equipment units of an elementary function is “restricted.”
Consequently, it may happen that a unit is needed and that all units are in use. In
that case, containers have to wait and the simple “first in first out” assignment rule
for units and containers is applied. The waiting times in this case are a measure for
the performance of the subsystem. (2) The number of equipment units is “not
restricted.” In the model, this is realized by dynamically creating a new unit any
time a unit is requested and no unit is available. The new units are added to the set
of units of the corresponding system. Consequently, there will be no delay due to a
lack of units. Here, the final measure is the total number of units created, indicating
the upper limit of units needed so as not to delay the container flow.
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In general, the number of equipment units for handling the originating flows will
be restricted and equipment for the derived flows will be not restricted. Next, the
processes of the classes of the elementary functions will be shown in pseudo-code.

The process of a Transport_System:

Repeat

Wait Until (ContainersToTransport >0 And TRANSPORTER_AVAIL-
ABLE)
Select container And remove it from ContainersToTransport
Select Transporter And remove it from AvailableTransporters
Assign container to Transporter
Determine route between source and destination of ContainerToTran-
sport
Start the process of the Transporter

The process of a Transporter

Repeat Until arrived at destination

Calculate Arrival Time at next route point
Drive until Arrival_Time
Register Arrival
Add ContainerToTransport to the ContainersToTransfer of the Trans-
fer_System of Destination
Enter Available_Transporters of MyTransportSystem
Suspend

The process of a Transfer_System:

Repeat

Wait Until (ContainersToTransfer >0 And TRANSFERUNIT_AVAILABLE)
Select Container And remove it from ContainersToTransfer
Select TransferUnit and Remove it from AvailableTransferUnits
Assign Container to TransferUnit
Start the Process of the TransferUnit

Process of a Transfer_Unit:

If ContainerToTransfer is in a Stack Then Remove it from Stack
Determine the TransferTime
Work TransferTime
If ContainerToTransfer arrives at a Stack Then
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If this Stack is ContainerToTransfer’s Destination Then

Register ContainerToTransfer’s throughput time
Remove ContainerToTransfer from Simulation

Else
Add ContainerToTransfer to the Stack

Else

Determine the TransportSystem according to the route of the Contain-
erToTransfer

Add ContainerToTransfer to ContainersToTransport of the proper
TransportSystem

Enter AvailableTransferUnits of MyTransfer_System
Suspend

4.2 Modeling deep-sea ships

A number of days before a deep-sea ship arrives, export containers, destined for
that ship, start arriving at the multiterminal complex. The time of arrival of a
container is its dwell time before the departure of its sea ship. The dwell time
distributions are considered to be input. At the arrival of a ship, all its export
containers are supposed to have arrived in the marine stack. After the ship has
arrived, its import containers are unloaded and at first stored in the marine stack.
Within some time period, they are successively moved toward their next mode of
transport directly or via another stack. The route a container follows in a
multiterminal goes from stack to stack, including temporary stacks associated with
the modalities of arrival and departure. Typically, an import container visits the
marine stack of the arrival terminal, and an export container visits the marine stack
of its departure terminal. A container may also stay in a local modality stack, for
example, the rail stack. The following ship and container element classes and their
attributes are defined:

Ship
–Arrival time
–Terminal
–‘stack’ with import containers to be unloaded
–‘stack’ for export containers to be loaded
Container
–import or export
–Myship (deep sea connection)
–Stacks to stay in
–Dwell time per stack
–Land side destination or origin
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4.3 Input generation

In the early design phase of future large-scale systems, usually only very rough
data, based on forecasts, is available. For the Port of Rotterdam, there are rough
estimates of yearly throughput of containers for a period of some 20 years ahead.
However, for investigation of the influences of the stochastic aspects of container
flows on handling, transport, stacking capacity, and infrastructure, a much smaller
timescale than 1 year is needed. Consequently, a very important step is to
decompose the rough year-based data into a much smaller timescale in the order of
magnitude of hours. For that purpose, arrival patterns of deep-sea ships, modal split
statistics, and dwell time distributions are needed. A team of experts has advised on
this matter on the basis of experience and current practice. To obtain consistency in
the model input, a separate generator model was developed to generate ship arrivals
and all related import and export container data [2]. The generator model creates a
simple berth planning based on the proposition that deep-sea ship arrivals are
scheduled on berth occupation level.

4.4 Implementation

The simulation model has been implemented at a platform that supports process
interaction modeling and allows switching between stand-alone mode and
distributed mode [21] http://www.tomasweb.com; Website regarding simulation
software applied in this work; last check of address: June 2005. The model can
accomplish distributed work by transforming all element classes to member
models, thus forming a distributed model structure [3, 5].

5 Modeling the Maasvlakte terminals

In this section, the application of the model will be described and the model input is
explained.

5.1 Fully developed MV2

MV2 will be developed gradually. We focus on the fully developed stage, probably
reached in 2025. The basic container flow predictions for that stage are listed in
Table 1. The flow is expressed in TEU per year. This number can be converted into
the number of real containers (boxes) by dividing by the so-called TEU factor. The

Table 1 Predicted number of 20 feet equivalent containers (TEU) per year at the fully developed
MV2 stage. The TEU factor of Rotterdam is 1.7

MV1 MV2 Total

TEU/year ×106 8.7 8.6 17.3
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TEU factor of a container batch is defined as x+1, where x represents the fraction of
40-ft containers in the batch.

Example A batch consisting of 100 40-ft and 60 20-ft containers represents
260 TEU. Here, x ¼ 100=160 ¼ 0:625, resulting in a TEU factor of 1.625.

In this work, the overall TEU factor of 1.7 of the Port of Rotterdam has been
used.

The total number of real containers expected to be processed per year is
10.2×106, corresponding with 11.2×103 sea ships.

The existing terminals on the first Maasvlakte are modeled as they are. For the
future MV2 terminals, three configurations are investigated:

– The compact configuration.
– The dedicated configuration.
– A combined configuration of dedicated and compact terminals. This configu-

ration was based on the results of the simulation experiments with the compact
and the dedicated case.

The compact and the dedicated configurations are two extreme situations. They
are investigated to determine the range of interterminal transportation capacity in
particular. The combined configuration is considered a realistic conceptual design
that has to be further developed.

The contours of MV2 are determined by geographical and nautical
considerations and are considered fixed in this study. The terminal configurations
to be evaluated have been drawn up by experts of the Port of Rotterdam and other
specialists. The combined configuration is shown in Fig. 5. The terminal 5
(MV2_III) is a typical compact terminal with a deep-sea quay (5.0), a gate area for
road traffic (5.1), a barge terminal (5.2), and a rail terminal (5.3). All MV2
terminals have a truck handling facility to reduce ITT. Terminal 1 (Euromax) is still
under development and will become a compact terminal. Terminal 2 (Delta)

Fig. 5 Picture of the combined configuration. Courtesy of the Port of Rotterdam
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represents the complete set of existing terminals at the ECT peninsula. TSC, BSC,
and RSC in Fig. 5 are external dedicated truck-, barge-, and rail-service centers,
respectively. Further, there are empty depots and the so-called Distripark for
stuffing and stripping activities, and there is a customs area with security scan
facilities.

5.2 Configuration data

The configuration data define the layout and equipment capacities available for the
different elementary functions, as well as the interterminal road network.

Layout data include:
Number of terminals and for each terminal:

– Terminal name
– Location coordinates
– Number of quay cranes and the quay length available
– Inter- and intraterminal connections
– Composition of elementary functions and a decision whether the number of

equipment units of the function is restricted or nonrestricted

The road network and for each road:

– Identification
– Coordinates, used as route points by the AGVs

Each deep-sea quayside has been assigned a finite unload and load handling
capacity. These capacities are projected on a fixed number of quay cranes. The
unload and load handling capacities, and thus the number of quay cranes, are tuned
to cope with the workload under the condition that the sea ships are served in time
by the transport system. For each quay, the length is set to the length available in
the conceptual design of the terminal. The actually used quay length will follow
from the simulation experiments.

5.3 Container flows

The year-based flows of Table 1 are resolved into ships and containers. Each
container has modal split information and a dwell time.

5.3.1 Ships

A number of representative ship types have been defined. They are listed in
Table 2. The actual ship types differ in call size, the number of cranes allowed
simultaneously, and crane handling rates. For each ship, the actual call size is
sampled from a distribution, taking into account the parameters of the
corresponding ship type. The ship arrival times are sampled within a certain
time window around the expected arrival times. An exception was made for the
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F-type ships, also called “jumbo” ships. Here, it is anticipated that the arrival times
are as expected. The jumbo ships are subdivided into five size classes from 8,000 to
12,500 TEU, with expected arrival times and destination terminals on a weekly
schedule.

The destinations and origins of import and export containers, respectively, are
obtained using modal split information. To that end, an “origin–destination”matrix
for both import and export flows has been constructed. The input generator model
creates a list of these deep-sea ships with container load information. The ship
definition is shown in Table 3. For each ship, the numbers of import and export
containers are sampled from distributions using the data from Table 2.

5.3.2 Dwell times and dwell time distributions

The dwell time of a container depends on its modal split connection. Import
containers that have the same modal split connection and arrive with the same
deep-sea ship are called a batch. On each batch, the corresponding dwell time
pattern is applied. The same holds for export containers destined for the same deep-
sea ship. In Table 4, an example of the definition of all possible modal split
connections and the associated average dwell times are shown. In the model, any
dwell time distribution may be defined [22]. Several dwell time distributions are
tested. It appears that the shape of the distribution does not significantly influence
the results. In this work, the actual dwell time of each container has been drawn
from a uniform distribution between 0 and (2* dwell time average) associated with
its modal split connection.

Containers that are transported with ITT usually stay in a marine stack and a
landside stack. For each modality connection, a “stack-preference-factor” that
prescribes the average fraction of the total dwell time in the marine stack has to be
set. If the stack-preference-factor for a container batch, for example, equals 0.7,
then the average stay time of the containers of that batch in the marine stack will be

Table 2 Definition of ship types

Ratio L/U factor Capacity (TEU) Length #QC Type

Min Average Max Min Average Max Max Max

0.3618 0.01 0.16 0.43 50 411 1,200 150 1 A
0.2276 0.02 0.29 0.93 600 1,693 3,000 200 2 B
0.0763 0.06 0.37 0.92 1,000 2,555 3,600 250 3 C
0.0719 0.06 0.32 0.80 2,700 4,599 6,600 300 4 D
0.2260 0.09 0.22 0.48 4,000 6,406 8,000 350 4 E
0.0364 0.30 0.375 0.45 8,000 10,000 12,500 450 6 F

Ratio fraction of total calls this ship type accounts for, L/Ufactor load/unload factor fraction of the
capacity of this ship type that has the terminal as origin/destination, taken equal in the average,
Capacity load capacity (in TEU) of this ship type, Length maximum length (in meters) of this
ship type, #QC maximum number of quay cranes possible simultaneously on this ship type,
Type ship-type indication (A–F)

For each ship, the L/U factor is sampled from a distribution
F-type is the biggest ship type. F-type ships are also called “Jumbo”
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0.7× (total dwell time). Unless stated otherwise, the stack-preference-factor was set
to 0.5.

5.3.3 Landside modalities and flows

The arrival of a deep-sea ship is anticipated by generating its export containers
before the ship actually arrives, according to the modal split data of the export load
and the appropriate dwell time. Export containers are generated in batches with a
size representative for a transport load of the modality concerned. Import
containers are collected at the landside terminal until a batch that represents a
transport load of the modality concerned is formed. In Fig. 6, an example is shown
of the generation of import container batches for a certain modality.

Table 3 Deep-sea ship definition

Ship name
Arrival day number
Arrival time
Arrival terminal
Ship category
Maximum number of quay cranes allowed
Number of container batches
Per batch:
Number of containers
Import or export (“I” of “E”)
Originating/destination terminal and its modality

Table 4 Definition of the average dwell times of each pair of modality connections

From To Average (days)

Sea Sea 3.4
Sea Rail 5.2
Sea Barge 3.5
Sea Truck 6.4
Sea Empty 3.0
Sea DistriPark 3.0
Rail Sea 3.7
Barge Sea 3.2
Truck Sea 3.7
Empty Sea 3.0
DistriPark Sea 3.0
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6 Results

In this section, typical results of simulation experiments are shown. The run length
of the simulation experiments was determined on 17 weeks. The first 4 weeks are
found to be sufficient to stabilize the model. During this period, no statistics were
collected. During the measuring period, about 2.7×106 containers are processed,
transported by 3.0×103 sea ships. Every 15 min, the status of the model was
monitored, resulting in time series of the equipment in use, the quay occupation,
the stack content, and the traffic flows. With these data, the averages and the 95%
percentile values are calculated.

To illustrate the variation of the measured values as a function of time, some
typical parts of the time series will be shown as time plots. The statistics on the
performance during the complete run length are presented in tables.

Fig. 6 Formation of import batches. As soon as the collected number of containers exceeds the
batch size (sampled from a batch size distribution of the specific modality), the batch is supposed
to leave the terminal with a transporter of the appropriate modality
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6.1 Time plots

Figures 7, 8 and 9 show typical time plots of the monitored data. Figure 7 gives the
variation of the content of two marine stacks. Figure 8 shows the total number of
interterminal AGVs in use, as a function of time representing the ITT transport
demand. Only loaded vehicles are counted. Figure 9 shows the quay occupation for
the MV2-III terminal for a period of 14 days.

6.2 Deep-sea quay occupation

Table 5 shows for each deep-sea quay the number of quay cranes and the quay
length available (model-input) and the resulting quay occupation expressed in the
average percentage, 95% percentile and maximum. The results for both compact
and dedicated configurations are similar because the ship arrival patterns and ship
load distributions are kept the same for all runs. The quay occupation perhaps
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seems low, but is rather common for service-oriented deep-sea terminals. The
conclusion drawn from these data is that quay length will not be a bottleneck in the
multiterminal operation.

6.3 Equipment use and stack volume

In Table 6, the ITT demand for all three configurations is shown. The numbers of
AGVs in use in the compact and dedicated designs are in the proportion of 1:3. The
number of AGVs in the combined configuration, as expected, is between the two
extreme cases. The security scan requires almost 20% more ITT AGVs.

For the combined configuration, two values of the stack-preference-factor were
tested. It appears that the resulting AGV needs for both values are nearly equal,
indicating that the total AGV need has leveled out. Setting the stack-preference-
factor to 1.0 requires “just in time” transportation of containers between the marine
terminal and the proper inland modality.

Table 7 shows the stack content for two different stack-preference-factors. The
total stack capacities used in both cases differ only by 0.4%, which is not
significant. This was expected because the total dwell time of the containers did not
change. Peak factors calculated using the 95% percentile values of Table 7 vary
from 1.14 to 1.27. This is in line with the rule of thumb values used in practice.

Table 5 The number of quay cranes and quay length available, average quay occupation, 95%
percentile quay occupation, and maximum quay occupation for all deep-sea terminals

Deep-sea
terminal

Number of
quay cranes

Quay
length
(m)

Average quay
occupation (%)

95% percentile
quay occupation

Maximum quay
occupation (%)

Euromax 13 1,800 29 58 86
Delta 34 5,250 26 41 52
MV2_I 15 2,000 29 59 92
MV2_II 15 2,000 32 64 90
MV2_III 15 2,000 28 58 85

Table 6 Number of single-loaded ITT AGVs in use for three configurations in the fully
developed MV2 in 2025. In the combined configuration, the influence of the X-ray scan of 2% of
all containers at a central point is also given

Compact Combined Normal/X-ray scan
stack-preference-factor=0.5

Combined normal stack-
preference-factor=1

Dedicated

Average # AGVs 104 173/205 173 318
95%
percentile #
AGVs

140 249/281 250 414
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6.4 Interterminal traffic flows on the infrastructure

Figure 10 shows both the average and 95% percentiles of the traffic flows on the
tracks of the terminal infrastructure. It shows that the 95% percentiles may be up to
three times higher than the average flows. These flows are used to determine how
many lanes and flyover constructions are necessary.

Table 7 Stack content in 103 TEU and peak factors for the combined configuration

Stack Stack-preference-factor=0.5 stacks Stack-preference-factor=1.0

Average
(103TEU)

95%
peak

Maximum
peak

Average
(103 TEU)

95%
peak

Maximum
peak

Euromax 13.6 1.27 1.41 14.2 1.26 1.40
Delta 33.0 1.15 1.24 36.3 1.15 1.24
MV2_I 12.9 1.15 1.25 16.2 1.11 1.21
MV2_II 15.9 1.15 1.25 17.9 1.14 1.23
MV2_III 13.7 1.20 1.31 14.8 1.20 1.30
Land side total 9.9 0
Sum averages 99.0 99.4

Fig. 10 Traffic flows (number of AGVs/hour) in the combined configuration expressed in loaded
vehicles/hour. For each direction, the average and the 95% percentile of the traffic flow in AGVs/
hour is indicated
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7 Conclusions

A concept was proposed to model a multiterminal system for container handling
using a transport function, a transfer function, and a stacking function as basic
building blocks. Each function has been modeled using the process interaction
approach for simulation. The model structure allows zooming in on the elementary
functions, giving possibilities for further tactical and operational extension of the
model while preserving the container flows through the system. The model is
applied to the set of existing container terminals in the Rotterdam port area and the
conceptually designed second Maasvlakte, resulting in the determination of the
requirements for the quay length, stacking capacity, handling and transport
equipment, and the interterminal traffic flows on the transport infrastructure. The
results of the study are used as a foundation for the further design of the MV2
infrastructure and the assessment of the cost.

7.1 Further developments

The design process of MV2 is still going on. Due to financial and nautical
considerations in the meantime, the sea approach to MV2 has been diverted. As a
consequence, the layout and the terminal configurations had to be adapted. Still,
one of the main issues is to reduce ITT traffic. Possible improvements may be
found in aiming at more compact terminals, optimizing empty depot locations, and
applying container scan stations at various locations. A number of new projects are
anticipated for detailed modeling and studying of parts of the MV2 complex. The
main issue in these models will be the development of intelligent control systems
and the optimization of equipment use and container throughput with a guaranteed
service time for the various users.

Acknowledgement This work is a result of the research program “FAMAS.MV2” directed by
the Port of Rotterdom. The simulation study has been carried out within the Delft Research
School for Transport, Infrastructure and Logistics (TRAIL).
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Abstract In this paper, a comparison between three transportation systems for the
overland transport of containers between container terminals is presented. A
simulation model has been developed to assist in this respect. Transport in this
study can be done by either multi-trailers, automated guided vehicles or automated
lifting vehicles. The model is equipped with a rule-based control system as well as
an advanced planning algorithm. The model is applied to a realistic scenario for the
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interaction with the handling equipment. Finally, a cost analysis has been executed
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1 Introduction

Rotterdam’s Maasvlakte complex has grown into a large complex of container
terminals, both automated and conventional terminals (see Fig. 1). In 2004, more
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than 8 million twenty-foot equivalent units (TEU) were transferred in Rotterdam,
while the coming years see a continuing growth.

Consequently, there will be an increased need for container transport between
the various terminals and the various modalities (rail, road, barge, sea). Also, the
transport between these modalities and other service centres (empty depots,
DistriPark) will increase. This transport is called inter-terminal transport (ITT). At
present, ITT is executed by means of the multi-trailer system (MTS). Such a system
uses manned trucks, pulling trains of five trailers. The problem under consideration
is whether this system is efficient enough to handle the large container
streams predicted for the near future or whether other systems using auto-
mated guided vehicles would be more cost-effective. To this end, the project
Inter-Terminal Transport was initiated. The project was commissioned by
Incomaas (1994).

The objective of the study is to give a recommendation on the effectiveness and
efficiency of three possible transport systems, viz, the present MTS system, a system
based on automated guided vehicles (AGVs) and a system based on automated lift
vehicles (ALVs). For this purpose, a simulation model of the inter-terminal transport
(ITT) system at the Maasvlakte has been developed, including container handling at
terminals, container transport between terminals and a control system.

Each transport system has different transport and handling characteristics. The
MTS system uses manual drivers, and to increase efficiency five trailers are pulled.
It has, however, problems in using that capacity efficiently. The AGV system
transports only one load per trip and requires a crane to start or finish its job. Hence,
it is very dependent on the capacity of the transshipment cranes. Finally, the ALV
system works like an automated straddle carrier, although the one considered in this
paper cannot stack containers on top of each other. It does not need cranes, as it can
lift and drop containers itself. At the time of the study, it was a hypothetical system,
but in the meantime, automatic straddle carriers have been developed by Kalmar,
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Fig. 1 General layout of the ECT peninsula at the Maasvlakte
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the equipment manufacturer; they have been commissioned at the Patrick’s
container terminal in Brisbane, Australia as of Dec 1, 2005.

A lot of research on the processes and operations in container terminals has
been done; Steenken et al. (2004) present an excellent overview. Research on an
operational comparison of transportation systems, however, is scarce. Yang et al.
(2004) compare through simulation an AGV system and an ALV system for
loading and unloading containers from a ship to the stack at a hypothetical
automated container terminal. They conclude that the ALV system is superior in
performance because it does not have to wait for cranes to load/unload. The study
by Vis and Harika (2004) is on a similar topic. They also conclude that the ALV
system needs fewer vehicles than the AGV system.

In this paper, we consider inter-terminal transport rather than quay transport. We
also include an MTS system and we consider the transportation over a network
including a barge and rail terminal in detail with time-dependent demand. In the quay
transport, the quay cranes are the bottleneck and the vehicle system should follow. In
the inter-terminal transport, both the vehicle system and handling cranes are
bottlenecks, and also a much more complex vehicle planning and control system
needs to be used. Liu et al. (2004) have studied the effect of different layouts and
traffic restrictions of AGVs in automated container terminals. Liu et al. (2002)
compare four different terminal transport options: one usingAGVs, one using a linear
motor conveyance system, one using an overhead grid rail system and one using a
high-rise automatic storage and retrieval system. They conclude that the AGV-based
system performs best. Evers and Koppers (1996) emphasize the importance of AGV
control for the system performance and present a modelling technique for traffic
control at automated container terminals. Other related work is done on internal
transport in warehouses; see e.g. Le Anh (2005) and Le Anh and De Koster (2006);
the relations are verymuch in the planning and control of the vehicles. However, these
systems do not consider the lifting of the loads explicitly. Finally, we like to
mention Corry and Kozan (2006) who consider load planning of intermodal trains,
which is important to understand our outcomes in the rail terminal.

In chapter 2, we present a simulation model with a very detailed modelling of
the need for transport, e.g. created by departure of trains and barges, implemented by
the use of double transport windows (viz, for departure and arrival). Furthermore, the
influence of stochastic disturbances in handling and travel times is modelled. In
chapter 3, results are given on the performance of the various systems. We provide
the number of transportation units needed for a certain on-time performance.

1.1 Inter-terminal Transport (ITT)

The tasks of the ITT can be summarised as follows:

1. the punctual (neither early nor late) collection of containers from their point of
origin

2. the punctual delivery of containers at the desired point of destination
3. the possible bridging of discrepancies in both these tasks by ‘buffering on

wheels’ or in a transport-stack (‘on ground’)
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An important performance criterion is the time it takes ITT-transported
containers to reach their destination, including the handling at the destination
terminal. If this completion time is later than the permitted latest arrival time for the
container, this is considered as ‘non-performance’. Non-performance as defined
above is used as the most important criterion for the assessment of the ITT options.
Another important performance criterion for ITT is the punctuality of departure of
means of container transport such as trains and barges. In this case, ‘non-
performance’ is defined as the late departure of a vessel or train as a result of the late
delivery of one or more containers. Further performance indicators, which often take
the form of averages and distributions, include vehicle occupation rates, number of
empty trips, vehicle loading rate (percentage loaded, only MTS), number of vehicles
waiting to load or unload and the equipment utilization at the terminals.

1.2 The area investigated

The area investigated consists of the Europe Container Terminals (ECT) Peninsula,
with its marine terminals, and the peripheral service centres (Fig. 1). The system
comprises the following terminals: the marine terminals (DDW, DDE, DSL and
DMU) and the empty depots (ED) on the peninsula, the Barge Service Centre
(BSC), the Rail Terminal (RT), the Rail Service Centre (RSC) and the DistriPark
(DP). Each terminal has one or more handling centres (HC), indicated by a number
behind its prefix. A handling centre is the origin or destination of an ITT move. In
our approach, we created a transport network of handling centres in which the
longest transport distance is almost 6,000 m.

1.3 Transport demand

Estimates for the container flows handled by the ITTare given in an origin–destination
matrix in which the flows are shown on an annual basis, about 1.4×106 containers per
year, or 27,277 per week; see the Appendix for details. To determine the dynamic
effects of ITT, it is important to know these flows over a shorter time basis. To this end,
the flow dynamics are generated with the aid of statistical distribution functions
representing daily fluctuations. For the RT and the RSC, the incoming and outgoing
flows are generated with the aid of service timetables. All the terminals except RT,
RSC and BSC are equipped with a container stack, which is called the ‘uncoupling
stack’. ITT flows to and frommarine terminals are uncoupled from the sea side at this
stack. Also the DistriPark (DP) and the Empty Depots (ED) are equipped with a stack
that uncouples the ITT from the activities inside these locations.

1.4 ITT vehicles

Three types of ITT vehicles are distinguished:

1. MTS, the multi-trailer system, consisting of a train of trailers on which
containers (maximum ten TEU, Twenty-foot Equivalent Unit) can be carried,
drawn by a manned traction unit (FTF); see Fig. 2
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2. AGV, an automated guided vehicle, similar to the AGVs currently used by ECT;
see Fig. 3

3. ALV, the automated lift vehicle, an automated guided vehicle equipped to pick
up and set down containers; see Fig. 4

The MTS is the main system currently used for inter-terminal transport at
the Maasvlakte. The AGV system is used in several automated terminals of the
Maasvlakte, but not yet for inter-terminal transport. At the time of our study, the
ALV system was still in the design stage; see Meeusen and Evers (1994) for a
proposal. It is an interesting option because the way it operates uncouples the ITT
from the equipment at the terminals.

2 Modelling

The four models that have been developed and the associated data files are shown
schematically in Fig. 5. In the following paragraphs, the generator and the ITT
simulation model are explained. The traffic density model has been used for a more
detailed study of the traffic flows and will not be discussed in this paper. It uses the
outcomes of the present study to investigate whether the envisaged flows and
queues are also possible from a traffic physical point of view. The advanced
planning model is used to generate a better planning for the MTS variant and is
discussed in Kurstjens et al. (1996).

2.1 Generator model

The container flow data are generated by a separate computer model, theGenerator
model. In addition to the configuration data, the input data of this model includes
the data relating to the container flows. For example, in the case of an RSC, this
will relate the timetables of the trains and shuttles to the loading data. For marine
terminals, empty depots and the DistriPark statistical distributions are used to
derive the arrival times, the size, the origin and the destination of containers. The
generator model takes into account the available transshipment, quay and batching

Fig. 2 The multi-trailer system (MTS) in use with ECT
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capacity of the various terminals. The output of the generator model provides the
input for the simulation model. In this way, experiments can be better controlled
and the three transportation systems can be compared in a better way.

To generate well-defined ITT flows, a distinction is made between two types of
flow called PUSH flow and PULL flow. If terminal A takes the initiative to send
containers to terminal B, these are termed push containers from terminal A to B. If
terminal B requests containers from terminal A, these are termed pull containers
from terminal A to B. In both cases, containers are moving from A to B. Push
containers have a time window varying between 2 and 24 hours, while pull
containers one between 2 and 72 hours. The number of rush containers with a
2 hour transport time window varies per handling centre. It varies between 0 and
25% of the total number of containers for that handling centre. Because containers
at RT, RSC and BSC are related to a train or barge, containers originating from
these handling centres can only be pushed and containers destined for these
handling centres only be pulled. In this way, a container from or to the RSC, BSC
or RT can always be associated with a train or barge, and the (derived) performance
of these carriers can be measured. In the case of rail and barge flows the generator

Fig. 3 An AGV with a quay crane in use at ECT-DSL

Fig. 4 A design for an ALV
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model takes care of allocation of trains to tracks and barges to quays. The
timetables, as described in a position paper of the Dutch Railways, Hoenders
(1994), are the basis of the allocation of the trains of suitable size on the available
tracks of the Rail Service Centre (RSC) and the existing Rail Terminal (RT). From
these timetables the time windows for the unloading and loading of a train can be
used. The groups of containers to be unloaded and loaded are determined for each
individual train and the position of each container is recorded as well as the time
window within which handling must take place. In total we modelled per week 107
trains at the RT and 164 at the RSC. The short-stay trains are mostly assigned to the
Rail Terminal, while the long-stay trains are assigned to the Rail Service Centre.

Barge arrivals and loads are generated on the basis of statistics. We modelled
some 102 barges per week. In the model, a barge contains three layers of
containers. As it is known in which layer each container is positioned, this can and
will be taken into account during loading and unloading.

2.2 The ITT simulation model

This model simulates the entire ITT process: the handling of ITT vehicles at the
terminals, the trip and waiting times of ITT vehicles, the control of the entire
process and a planning mechanism. The control and planning processes in the
model are ‘rule-based’.
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Fig. 5 Overview and relations between models and files (indicated by rectangles)
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The simulation model is object-oriented and works according to the process
description method (for a review, see Zeigler et al. 2000). The tool MUST is used
for the implementation (Must 1992). The various objects contain the data structure
of the components and, in the case of an active component, also the process
description of the component. The main component classes applied in the model
are described in the following paragraphs.

2.2.1 Containers

The Inter-Terminal Transport is simulated at container level. The object container
serves as a model for the containers that are transported by the ITT. This means that
during simulation a component is created for each container present in the system.
Containers are grouped in packets. A packet is a group of containers with common
ITT origin and destination. For containers going from or to trains and barges,
packets are grouped in batches and assigned to a batch carrier. At the start of its
departure time window the container is available for transport. Each container
object keeps and updates the data that control the transport. When a container
arrives at its destination, the container data indicate whether it is on time. After
recording of the performance, the ‘container’ is removed from the model.

2.2.2 Terminals and handling centres

All the terminals except rail and barge service centres are equipped with a container
stack, which is called the ‘uncoupling stack’. ITT flows to and from marine
terminals are uncoupled from the seaside at this stack.

Terminals are split into exchange points for ITT, the so-called handling centres
(HCs). Each HC has transshipment equipment to transfer containers to and from
the ITT vehicles. Several terminal types and related equipment are modelled. The
marine terminal, the distribution centre and the empty depot make use of the
standard HC that has ‘standard equipment’. The rail and barge service centres each
have their own type of HC, because at these handling centres the containers are
related to batch carriers, which require special equipment and handling procedures.
Every HC possesses all the data on vehicles that are present or on route to it.

2.2.3 Equipment for container handling

The object equipment is used to model loading/unloading equipment at HCs, such
as straddle carriers, fork lift trucks and automatic stacking cranes. For a standard
HC, the move time is drawn from a stochastic distribution. The standard capacity of
most HC is some 35 moves/h during the week, while during the weekend, it is 25
moves/h. Empty depot HCs have different capacities (EDs varying between 10 and
45 moves/h, the DP 30 moves/h). We did not model individual equipment at each
handling centre but considered the total as one super ‘crane’.

As the handling capacity is likely an important factor in our experiments, we
parameterised it by multiplying the standard capacity with a factor called
CapFactor. The factor is not applied to the rail and barge handling centres, nor to
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the waterside terminals in the corresponding AGV case. In this way, we can also
study the effects of varying the handling capacity. Each cycle of the equipment
process begins with ‘select action’. This selection is made on the basis of a decision
tree, which can be summarised as follows: if there is only something to load or to
unload, then do that; if both loading and unloading are possible, decide to unload a
vehicle and start with the one most urgent, unless the time needed for this exceeds
the planned execution time (plan time) of the succeeding load container.

For the equipment at rail and barge HCs, more detailed processes are modelled.
Each rail HC comprises a number of rail tracks and vehicle tracks (termed
‘bundle’), served by one rail crane. The control of the RSC and RTcranes takes into
account the time that trains stay and the priority of the movement of individual
containers. The movements of the crane and its trolley are modelled accurately,
taking into account the positions of the containers on the train, the crane
acceleration and speed and the trolley speed. Some details are max crane speed
(2.0 m/s), crane acceleration (0.35 m/s2), creep speed (0.2 m/s), trolley speed
(1.3 m/s), container loading time (20±5 s), unloading time (on AGV, MTS, ground)
(15±5 s). A barge handling centre consists of one quay with one BSC crane. It is
assumed that a ship can only berth after the preceding ship has finished unloading
and loading and has left. Therefore, a delay in the handling of one ship can cause a
large non-performance, especially during the busy hours of a week.

In the model, all containers on a ship must be unloaded before the crane can
start loading. The unloading of the ship starts at the top layer. Each layer must be
finished completely before the crane starts handling the next layer. Loading starts
with the bottom layer of the barge.

2.2.4 Vehicles for transportation system

In the model, a vehicle is a component that can transport containers from its loading
point to its destination. For all three vehicle types, the travel times are calculated
based on distance, average speed and a stochastic disturbance. The disturbance is
drawn from a uniform distribution between zero and 30% of the nominal travel time.

An AGV is a vehicle that is loaded and unloaded by equipment at a handling
centre and can travel from the loading point to its destination under its own power.
In the model, the control assigns an idle AGV to the loading equipment of the
handling centre (crane), which loads the AGV. After the crane activates the AGV, it
travels to the destination with a speed of 5.0 m/s. At the destination, the AGV needs
to position itself in 7.5 s, activates the crane at the destination and waits until
unloading is completed. The AGV then is idle again.

An ALV is a vehicle that can both load and unload containers and travel from the
loading point to its destination under its own power. In themodel, the control activates
an idle ALV. The ALV loads a container at its origin. Then it travels to the destination
of the container at a 4.0 m/s speed, unloads the container in 30 s and is idle again.

A MTS is a train of coupled trailers that can be loaded or unloaded with one or
more containers by handling centre equipment. An MTS is pulled by a manned
traction unit (FTF) from its point of origin to its destination. An MTS object cannot
carry out any process itself. A FTF couples and uncouples itself to and from an
MTS in 65 s and rides from point of origin to destination. In the model, the control
assigns an idle MTS to the equipment (crane), which loads the trailers with one or
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more containers. Then the MTS is put in a waiting queue at the handling centre.
When a FTF arrives, the control can assign the FTF to the MTS. The FTF couples
the MTS and travels to the destination of the containers on the trailers. At the
destination, the FTF uncouples the MTS, puts it in a waiting queue and activates
the crane at the destination. The MTS waits until it is unloaded, and then is idle
again. The FTF speed is 7.7 m/s without MTS and 6.6 m/s with MTS.

Both planning and control generate empty trips for AGVs, ALVs, MTSs and
FTFs when necessary. For an empty trip of an MTS, it is put in the waiting queue
without a container load, and waits for an FTF. An empty trip for an FTF means
that it does not pull an MTS.

2.3 The standard control and planning algorithm

The control of the simulation model determines for each vehicle (including the
FTFs in the multi-trailer system) what the next action is after finishing a job. For
the ALVand AGV systems, a job is finished when the destination is reached and a
crane has removed a container if present. For the FTF system, a job is finished if it
reaches a handling centre and is decoupled from a possible MTS it has pulled. For
the MTS, a job is finished if it arrives at a destination and is unloaded of all
containers. The next action for a vehicle is one of the following three options:

1. wait for loading at the current HC
2. go to another HC (AGV, ALV, FTF: start empty trip; MTS: wait for FTF)
3. remain idle

The standard planning algorithm generates extra empty trips of the vehicles
based on the expected vehicle balance over a longer horizon. In the MTS option, an
advanced planning system has been developed for the generation of all empty trips
and the allocation of FTFs to trips. This module is reported in Kurstjens et al. (1996).

The type of control described in this paper is a way of centralised control with
multi-attribute rules applied in a hierarchical way, with a look-ahead period. The
review of Le Anh and De Koster (2006) gives some guidelines about when which
control rules to use, in which our approach seems to fit. These recommendations
are general, and the best type depends on the specific problem circumstances.
Moreover, in every case, one has to optimise the control parameters as we did.

2.3.1 Vehicle control

The control heuristic is executed each time:

1. a vehicle or FTF at a handling centre becomes ‘idle’
2. a handling crane has finished a loading or unloading action

This approach will result in frequent calls of the heuristic, several times per
minute. It is expected that this behaviour can be optimised further.
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The control heuristic contains the following steps:

1. Determine the vehicle requirement at each HC
2. Meet the vehicle requirement with idle vehicles
3. Activate all handling equipment if necessary

Step 1 In this step, it is determined whether a HC has a shortage or a surplus of
vehicles. This balance is calculated based on the planned transport jobs, the
number of vehicles in the waiting queues at the HC and the number of
vehicles driving towards the HC.

For the planned transport jobs, a distinction is made between urgent and planned
(non-urgent) transport jobs.

The degree of urgency is determined by:

1. BSC, the number of containers to be unloaded from a berthed barge
2. RSC, the number of containers that must be quickly unloaded from a train to

prevent their late arrival at their destination (taking expected travel time into
account)

3. Other HC, the number of containers where remaining time before non-
performance occurs equals the expected travel time plus a certain safety margin

Only in the AGV variant the number of urgently required vehicles is
artificially increased with a fraction (10%) of the total number of transport orders
present. The result is that even when there are no urgent orders, empty trips are
made to handling centres with many transport orders, which improves the
performance substantially. The urgency requirement is limited to a specified
maximum, depending on the type of handling centre and its capacity.

Besides the urgent vehicle requirement, there is also a ‘normal’ requirement
for vehicles for the transport jobs that are not (yet) urgent. This number is also
limited to a specific maximum, depending on the type of handling centre, its
capacity, and for the AGV option on the length of the queue of loaded vehicles.
This is an important feature, as it prevents long queues at the HCs.

Step 2 After the vehicle requirements for each HC are determined, the idle
vehicles at each HC are assigned to an action. For each HC, the vehicle
requirement is satisfied with vehicles from the local idle queue, or vehicles
are sent from the queue of idle vehicles to elsewhere.

1. For AGVs and MTSs, the local requirement is first satisfied. First, the urgent
requirement, then the normal requirement is satisfied with local vehicles, if
available. After that, if there are still idle vehicles, the urgent requirement
elsewhere is satisfied. The HCs have been put in an ordered list based on
adjacency. For each HC with a surplus, one looks at the next HC with a
shortage.

2. For ALVs, the urgent requirement at all HCs is satisfied first. Preference is
for local ALVs, then ALVs from elsewhere are assigned. After satisfying the
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urgent requirement, the normal requirement is satisfied, first with local
ALVs, if available, and finally with ALVs from elsewhere.

Step 3 The control triggers the equipment to start loading the vehicles. This is
necessary because a handling crane will become idle when there are no
vehicles available for loading. Because the planning heuristic might have
assigned vehicles to a crane, the crane must be activated again.

2.3.2 FTF control

In the MTS option, the control also allocates the FTFs. No distinction is made
between urgent and non-urgent cases, but the number of FTFs needed at a HC is
determined by the net requirement for FTFs. First, an attempt is made to meet the
need for each HC from the FTFs present at the HC, which are in the ‘idle’ state.
Next, FTFs are sent on an empty trip from the HC with the largest surplus to the HC
with the greatest shortage of FTFs.

2.3.3 Standard planning

The standard planning module is always active for the AGVand ALVoptions and
only for the MTS option if indicated in the configuration. The planning module is
called up periodically (plan interval time). The planning determines the amount of
ITT vehicles at the various handling centres and generates the empty trips to restore
a balance. An empty trip is modelled as a transport job without container but with a
certain plan time.

For each planning call, the following occurs:

1. Read all transport orders for which the plan time is within the coming two
periods (plan interval time)

2. Calculate the vehicle surplus/shortage per handling centre: number of incoming
orders minus number of outgoing orders

3. Generate empty trips from the handling centres with a vehicle surplus to the
handling centres with a vehicle shortage, so that for each handling centre the
resulting surplus or shortage is zero. The plan times for the empty trips are
divided over the entire plan interval period.

2.4 Verification and validation

Verification and validation was done continuously during model development.
Especially in the implementation phase of the advanced MTS planning all
processes were verified thoroughly. The object-oriented modelling technique offers
the opportunity to give close attention to the internal structure of the model.
Important decisions concerning the number of handling centres at a terminal, the
layout and the container handling at BSC and RSC were discussed in depth. Staff at
ECT confirmed the validity of the modelling of the container streams, the terminal
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handling and the transport processes. All input data, like origin–destination
matrices, distance tables, vehicle speeds and equipment capacity, originate from the
specialists in the Incomaas project and are given in Celen et al. (1999).

3 Experiments and results

There are two reference layouts: the standard layout, termed the ‘Landside’, in
which the ITT runs only via the central area of the Maasvlakte peninsula
(see Fig. 1). This layout is used by the MTS, AGV and ALV variants. An
alternative layout, termed the ‘Waterside’ is only used in an AGV variant where the
AGVs drive along tracks at the waterside of the stack. In the first layout, vehicles at
the DSL, DDE and DDW terminals are served by straddle carriers, as these also
serve trucks for import and export of containers. The capacity of these straddle
carriers is modelled through the CapFactor variable. In the second layout, the
AGVs at the DSL, DDE and DDW terminals are handled by automatic stacking
cranes, which also serve the AGVs used for transport to the quay cranes (but which
are not modelled in our study). The results are split up into performance
measurements, vehicle characteristics and equipment characteristics. This paper
contains a sample of the results and shows typical phenomena observed over all
experiments.

The models that have been developed are used for an extensive experimental
programme, the objective of which was to determine the characteristics of the
various ITT options.

The five investigated systems are:

1. MTS/FTF with control and standard planning
2. MTS/FTF with control and advanced planning
3. AGV landside
4. AGV waterside
5. ALV

Note that the MTS systems employ batching to improve the productivity of the
driver in the FTF. As the FTF can be decoupled from the MTS, much less FTFs are
needed than multi-trailers. As in this case the planning is important, we put a lot of
work in developing both the standard planning and an advanced planning
(described in “Kurstjens et al. 1996"). Although an advanced planning may also be
interesting for AGVs, it was not developed primarily because vehicle dispatching
rules are known to work quite well in stochastic circumstances;
see Le Anh (2005).

The two AGV options differ in the fact that the AGVs are being loaded/
unloaded in the stack. In the waterside case, the loading/unloading could be
somewhat more easily done during ship operations, as during those times the
stacking cranes will be close to the waterside. That capacity is, therefore, cheaper.
We did model larger fluctuations in the waterside handling capacity, as these cranes
are also used for loading and unloading ships.

A distinction can be drawn between runs, which serve for the tuning of a
number of parameters, runs to determine the run length and production runs that
determine the ITT performance as a function of a number of factors. The tuning of
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the model is necessary to determine the setting of a number of parameters. These
parameters relate to the control and planning; for example: under what conditions is
a transport order urgent, how long before the physical arrival of a container is a
transport order planned, how long is the permitted pre-work time for a transport
job. Separate tuning is required for the railway handling of MTSs. We found that a
1-h cut-off time to define urgency in case AGV and ALV systems worked best
while the MTS system needed a 2-h cut-off time.

Before starting the experiments for each system, the optimal control-parameters
were determined. We did ten replications of a reference run of 10 weeks, which
revealed a relative standard deviation of some 15% (0.1% in absolute terms) in the
non-performance outcome of 0.8%, which was considered to be acceptable. Hence,
the length of the runs was set at 10 weeks of operations, preceded by a running-in
period of 1 week. Stochastic variation was reduced by the use of the generator file
and using always the same seed. In the production runs, the available ITT and the
handling capacity of the handling centres are varied. This variation is effected by
multiplying the nominal capacity by a capacity factor, shown in the graphs as
CapFactor. All in all, some 1,000 runs of different settings have been carried out,
each taking between 1 and 3 h (with the advanced planning) of computer time.

3.1 Performance measurement

Figures 6, 7, 8 and 9 show the non-performance as function of the number of
vehicles. In Fig. 10, the non-performance as a function of the CapFactor is shown
for the AGV landside variant.

Even with extreme high numbers of vehicles, the performance of the MTS
system remains clearly poorer than that of AGVand the ALV systems. The number
of late trains is almost eight times greater for the MTS option than for the AGV
option and 18 times greater than for the ALVoption. This can be easily explained,
particularly in the case of train handling. AGVs and ALVs travel as closely as
possible to the destination or point of origin of their container on the train, resulting
in shorter crane move times compared to the MTS variant. This is explained later in
Figs. 18 and 19: at the RSC, the average crane move time for the AGV case is
0.024 h and for MTS it is 0.034 h. By definition, the time lost by containers mounts
up as a result of the batch-type work method of the MTS option. Furthermore, in
the control and planning, concessions are made with regard to the departure times
to attain a better MTS loading rate. Containers can be kept back to be loaded on an
MTS with containers that become available later. As a result of peak loading at the
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destination terminal, this loss of time may lead to non-performance. This is a
typical disadvantage of batch-processing.

Figure 11 shows the irregular occurrence of non-performance. It is not evenly
spread over the weeks, but in peaks, as it is strongly related to workload peaks, such
as departures of trains and barges.

3.2 Vehicle characteristics

In this section, we show figures about the number of active vehicles. Although the
figures are for one particular case and particular week, they are exemplary for all
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weeks and cases. First, we show the variations in the number of active AGVs in
Fig. 12, next we show the number of busy ALVs in Fig. 13.

Notice that the use of the ALVs is much more constant in time than the use of
the AGVs. This is presumably due to the fact that they can work independently of
the cranes, while the AGVs are often engaged in waiting, which gives much more
fluctuations. In Fig. 14, we show the number of active MTS and FTF in case of
standard and advanced planning.

Notice the difference between the MTS case with and without advanced
planning. In the first case, more combinations between forward and return trips are
made, with a lower utilisation of the FTFs as a result. In the case of control and
standard planning, the FTFs are continuously sent somewhere: they are running
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behind their jobs all the time. Using an advanced planning does reduce the number
of MTSs needed somewhat, but the number of FTFs needed cannot be reduced,
presumably because the transport peaks determine this number.

The average number of MTSs in use is about 50% of the number available.
However, during some hours, many more vehicles are used (see Fig. 14). Reducing
the number of MTSs below 130 or the number of FTFs below 20 leads to an
unacceptable high level of non-performance. The ratio between loaded trips and
empty trips is 3:2. The utilisation of FTFs is rather high, with an average of 70%,
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with a ratio between pulling an MTS and not pulling of 13:1. The average number
of AGVs in use is rather constant, about 90. In peak situations, some 130 AGVs are
needed to avoid an unacceptable high level of non-performance. The ratio between
loaded trips and empty trips is 50:50. Notice the very large fluctuations in the
number of waiting AGVs in Fig. 15.
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The average number of busy ALVs is about 50, which is much less than the
number of AGVs needed for the same performance. The main difference with
AGVs is that ALVs are not kept in a waiting queue at the handling centres, like
AGVs (see Fig. 15). The loaded-trip-to-empty-trip ratio for ALVs is 5:3.

Figure 16 shows the distribution of the load utilisation (number of loaded
containers units/load capacity) of MTSs. A peak is shown at 10, which means a
100% loading utilisation. The peak at 2 is due to urgent containers (two TEU
correspond to a single 40-ft container), which are loaded on an MTS and then sent
away, while the other load positions at the MTS remain empty. The average load
utilisation is only 62%, which is caused by the impossibility to combine containers
with different destinations on the same MTS.
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3.3 Equipment characteristics

To investigate the possibility of sharing terminal equipment, the moves of several
handling centres at a terminal have also been added up. Figure 17 shows the
aggregate moves at the DMU terminal. Note the lower level of activities during the
weekend. It is clear that levelling out of peaks occurs, although the remaining peaks
are substantial. This is due to deadlines for all kind of departing transport means. It
also means that we cannot save much by exchanging equipment between handling
centres.

Figures 18 and 19 show the difference in cycle times of a rail crane when using
MTSs or AGVs. In the latter case, AGVs travel to the correct position next to the
train, while theMTS has to position itself with a number of containers along the train.
We did assume that the loading sequence at the train is random for the dispatching
handling centre, as the position on the train depends onmany factors like size, weight
and destination of a container, implying that not all containers of a handling centre are
likely to be next to each other on the train; see e.g. Corry and Kozan (2006).
Therefore, the RSC crane has a shorter average cycle in case of AGV transport
(0.024 h) than for the MTS case (0.034 h), resulting in higher productivity.

3.4 Cost characteristics

In Table 1, the average and maximum numbers of vehicles in use are given for a
realised non-performance of 1.0%; the results in this table are the cost-optimal
solutions for each variant; hence, the differences in the value of the CapFactor. In
the multi-trailer system, the MTS is a trailer combination with a capacity of ten
TEU, while in the AGVand ALV systems, the capacity of a vehicle is one container
(1 or 2 TEU). A much larger transport capacity (in TEU) in the MTS case is needed
than in the AGV and ALV systems to reach the same non-performance target.
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Fig. 19 Move times in hours at HC 19 (RSC1) when using AGVs

Fig. 18 Move times in hours at HC 19 (RSC1) when using MTSs
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In Table 2, we show the utilisation of the vehicles. The differences between
MTS control and MTS planning are caused by differences in utilisation rate and
waiting times; MTS-planning is more efficient. However, the peak levels for both
variants are identical. When using AGVs, much less vehicles are needed and the
utilisation rate of the vehicles is higher. In the waterside variant, more AGVs are
needed than in the landside variant because the distances are longer. In the ALV
variant, the number of needed vehicles is the lowest, their utilisation is very high
and their waiting times are minimal. From a logistic point of view, this seems to be
the best choice.

A cost analysis by Incomaas (1994) resulted in the cost curves shown in Fig. 20.
Actual costs were confidential. The service level (100% minus the non-
performance) is shown at different costs for the MTS, AGV and ALV options.
The costs are directly related to the CapFactor (capacity at the handling centres),
the number of vehicles and the usage of the vehicles. At each cost level, the
combination of CapFactor and number of vehicles with lowest non-performance is
determined for all options. These points are used to draw the lines in Fig. 20.

It can be concluded that the robotised ITT (AGVs and ALVs) achieves the best
service level at the lowest costs. Notice that for both the AGV and the ALV
approaches, the service level rapidly increases to a plateau level if their number
increases. The level of this plateau depends on other bottlenecks in the system, e.g.
limited transfer cranes, or peaks in the demand for transport. TheMTS solutions seem

Table 1 Overview used transport vehicles and capacity factor for a service level of 99%

MTS standard
planning

MTS advanced
planning

AGV land
side

AGV
waterside

ALV

Average vehicle use FTF 16.5 FTF 13.5 84.8 95.0 50.0
MTS 106.4 MTS 64.2

Maximum FTF 18 FTF 18 122 144 60
MTS 145 MTS 145

CapFactor 1.23 1.15 1.23 1.15 0.90

Table 2 Utilisation (as % of time) of the transport vehicles and equipment given capacity from
Table 1

% time MTS std.
planning

MTS adv.
planning

AGV land s
ide

AGV
waterside

ALV

Idle 26.6 55.7 30.5 34.0 16.7
Trip fully loaded 5.4 5.3 19.3 18.2 49.1
Trip empty 4.0 3.5 17.2 16.4 29.9
Loading 3.1 3.3 3.4 2.9 2.2
Unloading 3.1 3.3 3.4 3.0 2.2
Waiting for loading 8.9 8.2 4.0 3.6 0.0
Waiting for unloading 25.1 15.4 22.2 22.1 0.0
Waiting for FTF 23.5 5.2

Handling equipment idle 50.7 46.8 50.6 37.4 32.8
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to converge slower to a somewhat lower plateau. This may be due to the combination
of the MTS with the trucks as well as in the lower flexibility of this system.

4 Conclusions

Stochastic fluctuations in the workload determine the number of ITT vehicles and
equipment required, and in that sense it is too expensive to ban out all non-
performance, in contrast with studies that focus on vehicles needed for quay
transport (Vis and Harika 2004 and Yang et al. 2004). A non-performance of less
than 1% can be achieved for all the options investigated. The lowest non-
performance rates attained with the AGV and ALV options are smaller than those
attained by the MTS option. The number of times that non-performance occurs at
rail or barge terminals when MTS is used is considerably higher than it is when
AGV and ALV options are used.

For each option, an estimate of the minimum number of ITT vehicles needed to
provide an acceptable performance can be given. These numbers, however, still
depend on the terminal capacities. The most economic combinations of numbers of
vehicles and terminal handling capacities are derived from calculations of costs.

For all options, the first aim is to achieve the lowest costs at acceptable levels of
non-performance. With the MTS option, it appears that to attain an acceptably low
non-performance, it is necessary to put a great deal of effort into the control and
planning of the ITT vehicles and terminal equipment. The handling of barge and
rail traffic is a complicating factor, largely as a result of the batch transport nature of
MTS processing.

The lower limit on the number of MTSs required is high because the MTSs are
also used as buffers on wheels. There appear to be occasional peaks in the number
of MTSs waiting to be unloaded. Moreover, the occupation rate achieved by MTS
is only of the order of 50%. A reduction in the number of MTSs seems to lead only
to an unacceptable non-performance. This is caused by the fact that there are a
number of periods during which a much higher number of MTSs is required and
that to be available for use, an MTS must not only be free, but must also be at the
right place. This last requirement becomes increasingly important as ITT flows
become less balanced. Further research into this phenomenon is recommended.

The number of AGVs needed is strongly influenced by the buffer function that
the AGVs fulfil at the terminals and, thus, is closely related to the terminal
capacities. The utilisation rate is approximately 70% on the land side and 65% at

Fig. 20 Service rate vs costs
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the waterside. About half of the trips are made by loaded vehicles, but when fewer
vehicles are used, the non-performance is greatly increased. Here, too, in peak
situations, almost all the vehicles are required, and the use of a free AGV is largely
determined by the place where it is located and the time at which it will be required.

The number of ALVs needed is less than half the number of AGVs. Here, the
role of the terminal capacities is smaller than that of the other options because an
ALV can load and unload itself and can, thus, work independently of the terminal
equipment. A problem that arises is that there is limited space for containers to be
placed on the ground or picked up by ALVs. The utilisation rate of ALVs is 85%,
the percentage of loaded trips being 60%. The ALV option can be regarded as
setting a benchmark for individual automated container transport.

The utilisation of the terminal equipment is very variable. In most cases, the
average utilisation rate is lower than 50%, but the peak occupation rates are
frequently 100%. Combination of the work loads at different handling centres and
terminals shows that levelling out of peaks occurs. This may create opportunities to
share equipment. By extending the model, it will be possible to conduct further
research into this aspect.

The handling strategies used in the model for the RT and the RSC are
reasonably satisfactory. However, they are complex problems on their own,
requiring more research. It is difficult to serve the RSC and BSC with the MTS.
The loading rate of an MTS remains low and the numbers of late barges and trains
are much higher than those of the AGVs or ALVs.
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1 Appendix

1.1 OD-matrix on weekly basis

DMU DSL DDE DDW ED1 ED2 ED3 ED4 BSC RT RSC DP
DMU 0 288 348 348 154 0 288 730 1,557 366 807 536 5,422
DSL 288 s 248 248 76 0 134 346 270 442 192 288 2,532
DDE 348 248 0 0 116 0 212 558 384 366 462 424 3,118
DDW 348 248 0 0 116 0 212 558 384 366 462 424 3,118
ED1 77 38 58 58 0 0 0 0 77 19 77 0 404
ED2 0 0 0 0 0 0 0 0 58 19 58 0 135
ED3 154 76 116 116 0 0 0 0 173 38 135 0 808
ED4 385 192 288 288 0 0 0 0 423 115 365 0 2,056
BSC 1,786 308 442 442 19 19 38 115 0 0 0 58 3,227
RT 519 326 326 326 6 4 19 19 0 0 0 96 1,641
RSC 807 384 616 616 17 13 38 96 0 0 0 308 2,895
DP 326 192 288 288 0 0 0 0 173 154 500 0 1,921

5,038 2,300 2,730 2,730 504 36 941 2,422 3,499 1,885 3,058 2,134 27,277

Appendix

OD-matrix on weekly basis
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Rajeeva Moorthy . Chung-Piaw Teo

Berth management in container terminal:
The template design problem

Abstract One of the foremost planning problems in container transshipment
operation concerns the allocation of home berth (preferred berthing location) to a
set of vessels scheduled to call at the terminal on a weekly basis. The home berth
location is subsequently used as a key input to yard storage, personnel, and
equipment deployment planning. For instance, the yard planners use the home
berth template to plan for the storage locations of transshipment containers within
the terminal. These decisions (yard storage plan) are in turn used as inputs in actual
berthing operations, when the vessels call at the terminal. In this paper, we study
the economical impact of the home berth template design problem on container
terminal operations. In particular, we show that it involves a delicate trade-off
between the service (waiting time for vessels) and cost (movement of containers
between berth and yard) dimension of operations in the terminal. The problem is
further exacerbated by the fact that the actual arrival time of the vessels often
deviates from the scheduled arrival time, resulting in last-minute scrambling and
change of plans in the terminal operations. Practitioners on the ground deal with
this issue by building (capacity) buffers in the operational plan and to scramble for
additional resources if needs be. We propose a framework to address the home
berth design problem. We model this as a rectangle packing problem on a cylinder
and use a sequence pair based simulated annealing algorithm to solve the problem.
The sequence pair approach allows us to optimize over a large class of packing
efficiently and decomposes the home berth problem with data uncertainty into two
smaller subproblems that can be readily handled using techniques from stochastic
project scheduling. To evaluate the quality of a template, we use a dynamic berth
allocation package developed recently by Dai et al. (unpublished manuscript,
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2004) to obtain various berthing statistics associated with the template. Extensive
computational results show that the proposed model is able to construct efficient
and robust template for transshipment hub operations.

Keywords Container logistics . Transshipment hub . Sequence pair .

Project management

1 Introduction

Mega container terminals around the world routinely handle more than 10 million
TEU of cargo and serve thousands of vessels in a year. Efficiency of container
operations (along berth and within yard), to certain extent, determines the
competitiveness of the terminals within the global shipping network. This depends
on a delicate coordination of various expensive resources, including the
deployment of quay cranes and crews, allocation of prime movers and drivers,
planning and deployment of yard resources etc.

Port operations planning can be broadly classified into the following categories:

– Strategic planning deals with long-term issues, such as strategic alliances with
shipping lines, infrastructure development to support volume growth, etc. A
major exercise in this phase is to identify proper allocation of major/feeder
services to different terminals or various sections within a terminal to ensure
quick vessel turnaround and transship containers in short time windows.

– Tactical planning deals primarily with midterm berth and yard planning issues.
A berth template and an associated yard template are usually drawn so as to
minimize berthing delays and operational bottlenecks. The tactical plans follow
the general guidelines laid out in the strategic plans and is a primary driver of the
operational planning phase.

– Operational planning involves more detailed equipment and manpower
deployment plans, taking into consideration real time operational constraints.

Fig. 1 Tactical and operational planning before mooring a vessel
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These plans broadly follow the tactical plans and changes are dynamically made
so as to satisfy customer service demands.

In this paper, we study a tactical problem motivated by the operation in a large
container terminal, where close to 80% of the containers handled are designated for
transshipment to other destinations. Figure 1 shows the major activities and the
influence of the tactical plans on the operational level planning and execution.

Planning the yard is critical because the containers, after being unloaded from a
vessel, will be moved to an area in the yard to wait for the arrival of a connecting
vessel. The designated storage location in the yard and its distance from the
mooring positions of the connecting vessels along the quay determine to a large
extent the workload needed to carry out the transshipment operations. In general,
finding a proper storage plan for the transshipment containers is the main challenge
confronting the yard planners in the terminal. Designing these storage plans,
however, requires prior knowledge of the mooring locations and time-of-arrival of
the vessels. To address this issue, the terminal operator currently assigns a home
berth location for each vessel calling at the terminal on a weekly basis. Note that in
the current operational environment, almost all vessels calling the terminal follow a
fixed cycle of 7, 10, or 14 days, of which majority arrive on a weekly schedule. The
storage plan for the transshipment containers is designed by assuming that these
vessels will be moored at the designated home berths upon arrival.

Figure 2 shows two possible solutions for the home berth allocation problem.
The horizontal axis shows the scheduled time of call, which depends on the ship’s
schedule (thus not entirely within the control of the terminal operator) and
scheduled departure time of a vessel, whereas the vertical axis shows the berthing
location assigned. There are two groups of vessels (i.e., f3; 4g and f1; 2; 5g )
belonging to two shipping lines that call at the terminal. In this example, let us
assume that containers are exchanged only between vessels within a group. The
key question we would like to address in this paper is this: Which one of the two
templates should we use for the home berth allocation?

To minimize the amount of work for container operations, the template on the
left is desirable because vessels belonging to the same group are moored in close
proximity to each other. The transshipment containers in each group can thus be

Fig. 2 Two solutions to the home berth allocation problem
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stored in the same area of the yard, reducing the amount of work and distance
covered by the prime movers. However, in reality, the actual time of call of each
vessel will normally deviate from its scheduled time, and the processing time
needed to service a vessel may vary. This results in the necessity to adjust the
mooring locations of the vessels along the quay. For instance, if the departure of
vessel 1 is delayed for an extended time, the operation for vessel 2 will be
adversely affected. The delays may propagate and spread to other vessels (such as 5).
In practice, the planners may have to moor a vessel far away from its home berth,
just to cut down the waiting time of the vessel. In this case, the template on the right
of Fig. 2 may be more desirable, as there are sufficient gaps (buffers) in front of the
scheduled time-of-call of each vessel. The template is thus more robust to
unexpected delays experienced by the vessels, and this leads to a more stable and
reliable mooring plan, even though it may result in higher container handling cost.

Finding a good home berth template is clearly a difficult combinatorial
problem, because we have to search through exponentially many different ways to
assign a location to each vessel. Note that the time-of-call of the vessels are
preannounced by the shipping lines and cannot be changed by the template
designer. We also need to address the associated problem of finding a good way to
evaluate the robustness of a home berth template. To this end, we identify two
primary objectives used in container operations:

– Service level-waiting time. This is defined as the time elapsed between the actual
time-of-call at the port and the beginning of the mooring operation along the
berth. A vessel is said to be berthed-on-arrival (BOA) if the mooring operation
commences within 2 h of arrival. The BOA statistics is often used as a proxy to
gauge the quality of service provided by the port operator.

– Operational cost-connectivity. The actual movement cost (containers move from
quay to yard storage location and, subsequently, from storage to quayside to be
loaded to the connecting vessel) is difficult to estimate and depends also on the
storage plan of the containers. As a proxy, we approximate the movement cost
with the following: Let xi and xj denote the berthing locations of vessels i and j
(measured with respect to the midpoint of the vessels) and cij the number of
containers to be exchanged between vessels i and j. If vessel i arrives before j,
then cij denotes the number of containers that need to be transferred from i to j.
On the other hand, if vessel j arrives before i , then cij denotes the number of
containers that need to be transferred from j to i. The connectivity cost is
defined to be cij � dðxi; xjÞ , where dð�; �Þ is a properly selected distance
function. In reality, the effort required to transport containers depends on their
storage locations in the yard. However, as a policy, most of the containers are
stored close to the berth where the vessel on which they should be loaded will be
moored. Hence, using the berthing locations of the vessels to compute
connectivity cost is acceptable in reality.

We use the two opposing objectives to develop an approach to evaluate the
relative performance of different home berth templates. Figure 3 shows the
efficient frontiers for two different templates: B is clearly a better design compared
to A , as it attains a higher service level at a lower operating cost.

66 R. Moorthy and C-P. Teo



In the rest of this paper, we develop a methodology to design a good home berth
template, and we use the dynamic berth allocation planning package developed in
Dai et al. (unpublished manuscript, 2004) to estimate the efficient frontier attained.

1.1 Literature review

For an introduction to the terminal operations, we refer to Murty et al. (2005). The
operational issues involved in managing a container terminal are vividly described,
and they identify a number of operational planning problems. The foremost of
these is the berth assignment problem. It is also highlighted that data uncertainty
plays a critical role in decision making, and the authors specifically recommend
techniques to solve some of the operational issues. The paper, however, deals only
with operational issues in the terminal and furthermore does not solve the berth
planning problem.

Most of the papers in the berth planning literature focus on the combinatorial
complexity of the static berth planning problem, where the objective is to obtain a
nonoverlapping berth plan within a given scheduling window (cf. Brown et al.
(1994); Lim (1998); Chen and Hsieh (1999) and the references therein). In all these
papers, it is assumed that some preferred berth location is already known. The
focus is to penalize deviation from the preferred locations and to penalize for
excessive waiting times. The connectivity cost component is not considered. Dai
et al. (unpublished manuscript, 2004) solve the berth planning problem for the
dynamic case when vessels arrive over time. They provide a set of stability
conditions when the arrival information is random using the tools from stochastic
processing networks. They also provide a local search method for obtaining good
berth plans using the sequence pair approach.

The berth template problem is also related to a variant of the two-dimensional
rectangle packing problem, where the objective is to place a set of rectangles in the
plane without overlap so that a given cost function will be minimized. In typical
rectangle packing papers, the objectives are normally to minimize the height or area

Fig. 3 The efficient frontier for two different templates
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used in the packing solution. Imahori et al. (2003), building on a long series of
work by Murata et al. (1996, 1998), Tang et al. (2000) etc., propose a local search
method for this problem, using an encoding scheme called sequence pair. Their
approach is able to address the rectangle packing problem with spatial cost function
of the type gðmaxipiðxiÞ;maxiqiðtiÞÞ, where pi, qi are general cost functions and can
be discontinuous or nonlinear, and g is nondecreasing in its parameters. Given a
fixed sequence pair, Imahori et al. (2003) showed that the associated optimization
problem can be solved efficiently using a Dynamic Programming framework.

The technique in this paper builds on the sequence pair concept in this series of
works. We extend the concept to handle the situation of rectangle packing on a
cylinder (instead of the plane). We use this technique to handle the complexity
inherent in the combinatorial explosion of the number of different possible
template designs. We also integrate this method with results in stochastic project
scheduling, which allows us to analyze the impact of arrival time uncertainties on
waiting times of the vessels for a class of templates. Note that the problem of
evaluating expected delay in a project network can be cast as one of determining
the expected longest path in a network with random arc lengths. The problem is
well-studied in the project management community.

2 The sequence pair approach

In this section, we describe how we structure the search over all possible template
designs, using an encoding scheme called sequence pair (represented by a pair of
permutations of the vessels). Each pair of permutation corresponds to a class of
templates, where the connectivity cost and waiting time objectives can be evaluated
efficiently. We use the standard simulated annealing scheme to search the space of
all sequence pairs.

Note that a container terminal is divided into a number of linear stretches of
berthing space called wharfs, which are further subdivided into sections, called
berths, depending on the draft.

In the template, the berthing time is fixed at the scheduled arrival time of the
vessels. The decision variables in the home berth problem is essentially xi , the
berthing location of vessel i within the terminal. However, as we are also interested
in the delays experienced by each vessel, we let ti (another decision variable)
denote the planned berthing time of vessel i, where ti may be larger than μðriÞ, the
scheduled (expected) arrival time of the vessel. The difference between ti and μðriÞ
is the planned delays for vessel i. The actual delays experienced by each vessel are
more complicated, as they depend on the (random) arrival time of several other
vessels calling at the terminal. We will develop a technique in the next section to
capture the expected delays due to the home berth allocation decisions. (See
Table 1 for the list of notations used in this paper.)

A priori, it is not clear whether we can design a home berth template where all
the vessels are nonoverlapping, because there may be instances where the demand
for terminal space exceed the total available space within the terminal. Another
complication lies in the periodic schedule operated by the vessels, as we need to
ensure that the packing near the two boundaries are properly aligned to avoid
excessive overlapping of terminal space, as one move from the end of 1 week to the
beginning of the next.
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If we ignore the inherent periodicity of the weekly arrival schedule and the issue
of overlapping vessels in the template, the layout of the home berth template (cf.
Fig. 2) can be conveniently viewed as a packing of rectangles in a two-dimensional
(time–space) plane, where the berthing time of the vessel i is taken to be μðriÞ, the
scheduled (expected) arrival time of the vessel. However, the periodicity of the
schedule introduces added complexity to the problem—the template is more
suitably viewed as packing rectangles on a cylinder with circumference P .

For ease of exposition, we will first review the sequence pair concept for
packing on a plane. Consider the template of two vessels as shown in Fig. 4. We
define a pair of permutations H and V associated with the template and construct
them with the following properties:

– If vessel a is on the right of vessel b inH, then vessel b does not see vessel a on
its LEFT-UP view.

– Similarly, if vessel i is on the right of vessel j in V, then vessel j does not see
vessel i on its LEFT-DOWN view.

It is clear that, given any (nonoverlapping) template, we can construct a pair
ðH;V Þ (need not be unique) satisfying the above properties. For the rest of the
paper, we write a <H b (and a <V b ) if a is placed on the left of b in H
(respectively in V ). For any two vessels a and b, the ordering of a, b in H , V
essentially determines the relative placement of vessels in the packing.

– If a <H b and a <V b , then a does not see b in LEFT-DOWN or LEFT-UP,
i.e., vessel b is to the right of vessel a . In other words, vessel b can only be
berthed after vessel a leaves the terminal.

Table 1 Notations used in the paper

li Length of vessel i
pi: Expected length of port stay upon berthing by vessel i
wi: Cost for delaying vessel i. This can be interpreted as the vessel’s priority class.
P: Number of hours in the planning horizon (we use 24�7 h for a weekly template)
M : Number of berths in the terminal
Li: Length of berth i, i ¼ 1; . . . ;M

Fig. 4 The figure on the left shows the LEFT-UP view of vessel j, whereas the figure on the right
shows the LEFT-DOWN view of vessel j in the time–space plane. In the former, j cannot be on
the right of i in H , whereas in the latter, j cannot be on the right of i in V
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– If a <H b and b <V a , then a does not see b in LEFT-UP and b does not see a
in the LEFT-DOWN view, i.e., vessel b is berthed below vessel a in the
terminal.

For anyH and V, either one of the above holds, i.e., either vessel a and vessel b
do not overlap in time (one is to the right of the other) or do not overlap in space
(one is on top of the other).

Note that every sequence pair ðH;V Þ corresponds to a class of templates
satisfying the above properties. The constraints imposed by the sequence pairs
splits into two classes: constraints of the type xi þ li=2 � xj � lj=2 (in the space
variables) or of the type ti þ pi � tj (in the time variables). In this way, finding the
optimal packing in this class, given a fixed sequence pair, decomposes into two
subproblems: space and time (cf. Fig. 5). In the space and time graphs, each vessel
is represented by a node, and the constraints imposed by the sequence pair are
represented by directed arcs.

This decomposition provides the flexibility to address the stochastic issues in
the time problem and the connectivity cost minimization in the space problem
separately. This feature turns out to be extremely useful for our problem, as the
delay experienced by each vessel, for a fixed sequence pair, no longer depends on
the home berth location decision, but on the precedence constraints imposed by the
time-constraint graph.

With this insight, we obtain the optimal packing by searching among all
permutations of H and V . For each sequence pair ðH;V Þ, the procedure for
solving the time problem is described in the “Estimating the expected delays”
section. “Estimating the connectivity cost” section describes a model to solve the
space problem. The periodicity of vessel arrivals introduces additional complexity
in solving the template problem and we introduce the virtual wharf mark technique
in the “Rectangle packing on cylinder” section to address this issue. In “Searching
over the sequence pairs,” a simulated annealing-based search procedure is
described to obtain the optimal sequence pair.

Fig. 5 Directed graphs on the space and time variables along with a packing arising from the
sequence pair, H:{3,4,1,2,5} and V:{1,3,2,5,4}
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3 Evaluation of the template

3.1 Estimating the expected delays

In this section, we present a derivation for estimating the expected waiting time in a
general project management network with release time constraints. The associated
precedence relationship in time is shown as the time-constraint graph (cf. Fig. 5).

Let ri and pi represent the release time and processing time, respectively, for
each job in the network. We assume that both ri and pi are normal r.v., with mean
μðriÞ;μðpiÞ, and variance σðriÞ2; σðpiÞ2 . Let Si represent a minimal set of vessels
that should complete before vessel i can be processed. Note that Si depends on the
template obtained. In our example in Fig. 5, S1 ¼ ; , S3 ¼ ; , S2 ¼ f1; 3g ,
S4 ¼ f3g , and S5 ¼ f2g .

The planned berthing time ti is easy to determine in this case: it is simply the
(random) earliest possible starting time of vessel i . The value ti depends on the
completion time of the jobs in Si , as

ti ¼ max
�
ri;max

j2Si
ðtj þ pjÞ

�
:

The expected waiting time for job i is thus Eðti � riÞ , where
ti � ri ¼ max

�
0;max

j2Si
ðtj þ pjÞ � ri

�
:

Finding the exact distribution of the maximum of a multivariate distribution
with an arbitrary covariance structure is a difficult computational problem. In the
project management area, a common technique, called the Project Evaluation and
Review Technique, identifies a critical (longest) path in the network and uses
certain, carefully chosen distribution (such as Beta or Normal distribution) to
approximate the longest path duration in the stochastic network. The parameters in
the distribution for ti � ri are chosen with mean μðti � riÞ and variance σ2ðti � riÞ,

where

μðti � riÞ ¼ max
�
0;max

j2Si
ðEðtjÞ þ EðpjÞÞ � μðriÞ

�
; (1)

and σ2ðti � riÞ ¼ 0 if μðriÞ � maxj2Si ðEðtjÞ þ EðpjÞÞ , otherwise

σ2ðti � riÞ¼ðσ2ðtj� Þ þ σ2ðpj� ÞÞþσ2ðriÞ with j�¼ argmax
�
EðtjÞþEðpjÞ:j2Si

�
: (2)

This approach works well when there is a dominant longest path, i.e., a unique
solution to Eq. 1 exists, and this path attains the largest value in most realization of
the stochastic longest path problem. However, the variance estimation of the
longest path is too conservative, especially if there are many paths with mean path
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length close to μðti � riÞ in Eq. 1. Unfortunately, this is normally the case in the
template design problem, especially in a heavily congested environment. It is
crucial to distinguish between templates where there are only one vs several
potential paths, which may delay the berthing of a particular vessel. For this
purpose, we need a more refined estimate of the variance of the longest path
distribution.

When the underlying distributions are Gaussian, the following result is well-
known: Let X ¼ ðX1; . . . ;XnÞ be a multivariate normal distribution, with identical
mean EðXjÞ ¼ m , and variance σ2ðXjÞ for all j ¼ 1; . . . ; n . Let maxðX Þ denote
maxðX1; . . . ;XnÞ .

Proposition (Borel’s Inequality) For all λ > 0 ,

P maxðX Þ � EðmaxðX ÞÞ � λð Þ � P Z � λð Þ;
where Z � Nð0;maxðσ2ðX1Þ; . . . ; σ2ðXnÞÞÞ .

Note that the result does not hold for multivariate normal distribution if the
mean values are not identical. It suggests that the maximum variance can be used to
approximate the spread of maxðX Þ above the mean. We use the above insight to
improve our estimation of the variance for the longest path.

Fixed a buffer length L , define SiðLÞ 	 Si with

k2SiðLÞ if and only if ðEðtkÞ þ EðpkÞÞ�max
�
μðriÞ;max

j2Si
ðEðtjÞ þ EðpjÞÞ

�� L:

SiðLÞ consists of those paths whose expected length is within the buffer L from

max
�
μðriÞ;max

j2Si
ðEðtjÞ þ EðpjÞÞ

�
;

the earliest time vessel i can be berthed at the terminal. It corresponds to those jobs
that may potential block the berthing operations of vessel i. We refine our estimate
of the variance of the longest path by:

σ2 ti � rið Þ ¼ 0 if Si Lð Þ ¼ ;
maxj2Si Lð Þ σ2 tj

� �þ σ2 pj
� �

σ2 rið Þ� �
otherwise.

�
(3)

Note that the refined estimate for σ2ðti � riÞ is larger in Eq. 3 than Eq. 2 and
grows with the number of elements in SiðLÞ. This is desirable as it provides a
convenient way to penalize against template where there are many other vessels
blocking (within buffer of L hours) the berthing operation of another vessel.
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For the rest of this paper, we will approximate the distribution of ti � ri by a
normal distribution Nðμðti � riÞ; σ2ðti � riÞÞ, with the mean and variance given by
Eqs. 1 and 3. Hence,

Eðti � riÞ �
Z 1

0
ðxÞ 1

σðti � riÞ
ffiffiffiffiffiffi
2π

p exp

�
� 1

2

�
x� μðtiÞ � μðriÞ

σðti � riÞ
�2�

dx

¼
Z 1

μðriÞ�μðtiÞ
σðti�riÞ

ðyðσðti � riÞÞ þ μðtiÞ � μðriÞÞ 1ffiffiffiffiffiffi
2π

p exp

�
� 1

2
y2
�
dy

¼ σðti � riÞL
�
μðriÞ � μðtiÞ
σðti � riÞ

�
þ ðμðtiÞ � μðriÞÞ

�
1� F

�
μðriÞ � μðtiÞ
σðti � riÞ

��
where Lð�Þ and Fð�Þ are the standard unit normal loss and cumulative density
function and σðti � riÞ2 ¼ σðtiÞ2 þ σðriÞ2 . This value can thus be easily computed
to a high degree of accuracy by evaluating a simple integral, provided the value
μðtkÞ and σðtkÞ can be determined a priori for k 2 Si .

3.2 Estimating the connectivity cost

Given a sequence pair ðH;V Þ , let GS be the directed graph associated with
constraints involving the berthing location variables xi . Let Li;Ui; i ¼ 1; . . . ;W ;
denote the position of the lower and upper end of wharf i in the terminal. The
connectivity-cost problem can be formulated as:

PCð Þ min
PN
i¼1

PN
j¼iþ1

cijd xi; xj
� �

s:t: xk þ lk=2 �PW
i¼1

Uiyik 8 k ¼ 1; . . . ;N

xk � lk=2 �PW
i¼1

Liyik 8 k ¼ 1; . . . ;N

PW
i¼1

yik ¼ 1 8 k ¼ 1; . . . ;N

xi þ li=2 � xj � lj=2 if i; jð Þ 2 GS

yik 2 0; 1f g; i ¼ 1; . . . ;W ; k ¼ 1; . . . ;N
xi � 0; i ¼ 1; . . . ;N :

The first three constraints ensure that the vessels are not berthed across different
wharfs. By definition, each wharf corresponds to a stretch of linear space along the
quay in the terminal. Note that yik ¼ 1 implies that vessel i is berthed in wharf k .
The complexity of this problem depends on the structure of dð�Þ. Furthermore, we
need an extremely efficient routine to estimate the minimum connectivity cost,
because we have to solve this problem repeatedly over a large number of sequence
pairs. To this end, it will be convenient if xi is chosen to be the smallest value
satisfying the constraints in ðPCÞ, so that a solution to ðPCÞ can be obtained easily
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from the space precedence graph GS , in a recursive manner: For each vertex j ,
suppose maxi:ði;jÞ2GS

ðxi þ li=2Þ � lj=2 2 ½Lk;UkÞ , then

xj¼
maxi: i;jð Þ2GS

xi þ li=2ð Þ þ lj=2 if maxi: i;jð Þ2Gs
xi þ li=2ð Þ þ lj < Uk

Lk 0 þ lj=2
k 0 is the nearest wharft above ½Lk;UkÞ;
with Uk0 � Lk 0≧lj:

8<:
(4)

Unfortunately, choosing xi in the above manner may produce a very bad

solution with respect to the objective function
PN
i¼1

PN
j¼iþ1

cijdðxi; xjÞ. Furthermore, the

periodicity in the vessel schedule introduces additional complexity into this
problem. We introduce the notion of virtual wharf mark to address both these issues
in the next subsection.

3.3 Rectangle packing on cylinder

We first discuss how the estimation of delays can be modified. Consider Fig. 6,
where the template on the left ignores the wrap around effect (periodicity) of the
schedule; hence, we can treat S4 ¼ S1 ¼ S2 ¼ ;. After computing the values μðtiÞ
and σðtiÞ for i 2 f1; 2; 4g , we can proceed to compute μðt3Þ;σðt3Þ , and
μðt5Þ; σðt5Þ , using S3 ¼ f1g , S5 ¼ f1; 2; 4g . However, if we factor into the
periodicity of the schedule, we find that vessel 5 blocks the berthing operation of
vessel 1 and 4 (in the following week).

We address this problem by iteratively computing the first and second moment
values using the layout of the template on a plane over a few periods (i.e., few
weeks in our case). The overlap and blocking situation in Fig. 6 is thus captured if
we look at the layout in the second period (week). We stop the computation after a
few iterations so that the wrap -around effect is propagated into the computation.
We use this modification as the time cost objective while evaluating the waiting
time objective of a particular template.

Fig. 6 Template on a plane vs template on a cylinder
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We note that, for any nonoverlapping berth template (i.e., packing on a
cylinder), it is possible to find a partition such that it can be unwrapped to an
associated static berth plan (i.e., packing-on-a-plane). Figure 7 shows one such
partition obtained by unwrapping. The converse, however ,is not true because we
cannot guarantee that the vessels would not overlap when wrapped. Figure 6 shows
one such example.

To ensure that vessels can be propped appropriately in the associated static
berth plan, we introduce the notion of “virtual wharf mark” (VW). VW’s are
essentially additional vessels with appropriately chosen rw , lw ¼ 0 and pw ¼ 0
and with additional lower-bound constraint on the berthing location.

The problem of overlaps due to wrapping of the layout in the plane can be
avoided by using the virtual wharf mark technique. For example, Fig. 8 shows how
the overlap between vessel 2 and 4 (after wrapping around) can be eliminated
through the introduction of a virtual wharf mark w , with appropriately chosen
lower bound on the berthing location, and arrival time (in this case, T ) for w. In
Fig. 8, vessel 4 can be kept propped by maintaining ð4;wÞ and ðw; 4Þ in H and V
sequences, respectively.

In general, obtaining the appropriate wharf mark set and their associations with
the vessels is difficult, as it changes with the sequence pair. Furthermore, a large
number of wharf marks may be required to prop all the affected vessels to
appropriate height in the layout. Obtaining the set of virtual wharf marks and
appropriate lower bounds in the optimal solution is nontrivial, and our strategy is to
introduce VW as and when required. However, the dynamically introduced VW
aids in enlarging our search space, thereby allowing us to search over a larger
neighborhood. More details on implementation involving the virtual wharf mark is
presented in “Searching over the sequence pairs.”

Because the berth template is tactical in nature, there may be instances where
overlaps (in the template) cannot be avoided. These are instances where many
vessels need to be serviced at the same time according to the vessel performa. To
take care of this issue, we can also allow for vessel overlaps in the packing and try
to minimize them by adding a large penalty term to the objective function.

Fig. 7 Unwrapping a feasible template
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4 Searching over the sequence pairs

Searching for the optimal sequence pair is nontrivial, and we use a simulated
annealing-based local search procedure similar to the one proposed in Dai et al.
(unpublished manuscript, 2004). We employ the standard swap and shift
neighborhoods and a modification of the greedy neighborhood presented in Dai
et al. The greedy neighbor simply represents all the templates that can be obtained
by visually manipulating the vessel locations while keeping the berthing time
fixed. While manipulating the location, we ensure that the vessels do not overlap
even after wrapping the template.

The critical aspect for getting good solutions is to define an appropriate cooling
schedule and a sufficiently large neighborhood that can be explored efficiently.
With regard to the latter, we use the following standard structures (cf. Dai et al.,
unpublished manuscript, 2004):

(a) Single swap This is obtained by selecting two vessels and swapping them in
the sequence by interchanging their positions. Single swap is defined when the
swap operation is performed in either H or V sequence.

(b) Double swap Double swap neighborhood is obtained by selecting two vessels
and swapping them in both H and V sequences.

(c) Single shift This neighborhood is obtained by selecting two vessels and sliding
one vessel along the sequence until the relative positions are changed; i.e., if
i; j; . . . ; k; l is a subsequence, a shift operation involving i and l could
transform the subsequence to j; . . . ; k; l; i. There are many variants of this
operation depending on whether vessel i (or l ) is shifted to the left or right of
vessel l (or i ). We define single shift as a shift operation along one of the
sequences.

(d) Double shift This defines the neighborhood obtained by shifting along both H
and V sequences.

Figure 9 shows examples of the above operations and their impact on the packing
obtained. The above neighborhoods described are simple perturbations of the
sequence pair, but they result in remarkably different packing when compared
visually. Our next neighborhood structure, however, is obtained using visual
manipulation of the rectangles in the packing.

(e) Greedy neighborhood Given a sequence pair H and V and the associated
packing P, we evaluate all possible locations that vessel i can take, with the

Fig. 8 A virtual wharf mark can be used to add constraints for propping vessels as shown
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Fig. 9 Examples of swap and shift neighborhoods
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rest of the vessels fixed in their respective positions. If there is a better location
for the vessel, then we set the berth location of i to its new location. Note that
because the time is kept constant, it is easy to check whether there is an overlap
along the space dimension. Once the vessel is placed in the new location, we
repeat the procedure for the rest of the vessels, until no improvement is
possible.

Figure 10 shows the packing and the corresponding sequence pair obtained
from a simple greedy neighborhood. The greedy neighborhood artificially modifies
the position of the vessel along the space dimension, while keeping the berthing
time decision fixed. Once we find the best berthing location for a vessel and obtain
the corresponding sequence pair, we can then proceed to the next iteration of the
simulated annealing algorithm. However, because we confine ourselves to packing
where the berthing location decisions are obtained via a greedy manner (cf. Eq. 4),
we need to ensure that the packing obtained from the greedy neighborhood
exploration is suitably propped in the packing with additional VWs. New VWs are
thus dynamically added and dropped from the search procedure as we explore the
various neighborhoods in the simulated annealing algorithm.

Implementation incorporating virtual wharf mark The problem in adding
virtual wharf marks as additional vessels in the search space is that it increases the
problem size and, hence, the computation time. Here, we propose a cost-effective
way of implementing the approach by employing dynamic lower bounds.

Note that the vessels need to be propped after we employ the greedy
neighborhood. Instead of adding virtual wharf marks, the idea is to (dynamically)
set lower bounds for the berthing location for those vessels that need to be propped
by a virtual wharf mark in the packing.

We retain these lower bounds while exploring the neighborhood using
operators (a)–(d) and change the lower bounds only when operator (e) changes the
packing and introduces new virtual wharf marks. Searching the greedy
neighborhood is computationally more expensive than simple sequence pair
manipulation; hence, for the experiments, the operators (a)–(d) are employed
successively, while the operator (e) is used whenever the other operators get stuck
in a local optima.

Fig. 10 An example for greedy neighbor
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The dynamic lower bounding technique described above is equivalent to
adding a virtual wharf mark wk to i (with wk coming immediately after i in the H
sequence, and wk immediately before i in the V sequence) and performing all
neighborhood searches treating iwk in H and wki in V, as virtual vessel. Note that
swapping or shifting iwk with j in H or swapping or shifting wki with j in V has
the same effect of swapping or shifting i with j in the original H sequence, but
maintaining a lower bound (determined by virtual wharf mark wk) on vessel i in the
neighborhood.

5 Computational and simulation results

In the previous section, we described a procedure where good home berth template
can be constructed, using the sequence pair manipulation. In this section, we
evaluate the usefulness of this approach, by simulating the performance of the
template using a dynamic berth allocation package developed recently by Dai et al.
(unpublished manuscript, 2004). The simulation allows us to track the berthing
performance of the vessels over several months. We use the BOA statistics
(percentage of vessels berthed on arrival) and the connectivity cost (based on actual
berthing location of the vessels in the simulation) to construct the efficient frontier
for the template.

Throughout our simulation, we use the following observation to create realistic
input parameters for our model: In a typical port, the connectivity profile normally
exhibits the following feature. On the average, each vessel exchanges containers
with about 30% of the rest of the vessels calling at the port. Fifteen percent of these
container exchanges are in the range ½0; 100
 , and another 15% in the range
½100; 1000
 . We use dðxi; xjÞ ¼ jxi � xjj in our experiment.

To simplify our simulation, we also make the simplifying assumption that port
stay time is deterministic, and we focus on the importance of capturing the
variability of the arrival time of the vessels at the port. The variability of the port
stay time is within the control of the terminal management and can be controlled or
influenced by deploying appropriate amount of resources. The vessels’ arrival
time, however, is not within the control of the terminal; hence, it is deemed to play
a more important role in the berth management process.

The general simulation environment for the experiments is as follows:

– We use a data set that represents a vessel arrival pattern at a typical port. The
expected arrival time of vessels is the same as used in the template. It is assumed
that the berth planner does not get any updates on the vessel arrival time between
the time the template is drawn and when the actual deployment is done.

– Based on the vessel location in the template, a stepwise constant space cost is
generated for the problem. We call the berth that the vessel is expected to be
moored in (according to template) as the preferred berth. The space cost is
considered to be constant within each berth in the terminal. The cost of
allocating a vessel in any berth other than the preferred berth is set to be
proportional to the distance between the two berths.

– During dynamic deployment, the berth planner plans the berth allocation to a set
of vessels arriving within a scheduling window. Of course, as time rolls by, the
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scheduling window rolls forward too, hence, including newer vessel arrivals.
For the experiments, we set the scheduling window to 48 h.

– To prevent last-minute reshuffling of resources, the berth plan is frozen for two
shifts (i.e., 16 h) from the current time. Any changes in the vessel’s arrival time
will be accommodated within this window, but the vessel’s berth location will
remain fixed. This rule is of practical importance for the port operator as it eases
the resource bottlenecks.

– We assume that the vessels update their exact arrival time around 8 h from the
current time. For sensible comparison, we generate the actual arrival information
(from a normal distribution with mean ri , and a small variance) beforehand for
all the experiments.

– We compute the container movement cost between vessels once the simulation
is over. In this step, we assume that only the vessels within the same period are
connected. Specifically, for a vessel berthed at time ti

0 , we assume it to be
connected only o the vessels berthed between ti

0 � P
2 and ti

0 þ P
2 .

– In dynamic deployment, we consider a vessel to be berthed-on-arrival if it is
berthed earlier than ðr̂i þ 2Þ hours. Here, r̂i is the actual arrival time. BOA
directly corresponds to the service levels that a port guarantees to the vessels,
and maximizing BOA is a prime concern during deployment.

– The statistics on the percentage of vessels allocated to the preferred berth is
collected. This is a measure of the amount of replanning the berth planner has to
do when using a template.

5.1 The impact of variability on berthing performance

In practice, the home berth template is usually designed assuming that the vessels’
time-of-call is precise and does not fluctuate from the scheduled time of arrival.
Furthermore, the planners normally try to design a layout with as few overlaps as

Fig. 11 Plot shows a steady drop in performance as variance in arrival data is increased
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possible. We can incorporate these considerations in our home berth model, using
σ2ðriÞ ¼ 0 and a huge, lumpy cost to penalize for overlaps in our template.

Using the template obtained this way, Figure 11 shows the efficient frontiers
obtained under three different scenarios: (1) σ2ðriÞ ¼ 0 , (2) σ2ðriÞ ¼ 5 , and (3)
σ2ðriÞ ¼ 10 . As expected, the efficient frontier drops steadily from case 1 to 3, as
the variability of the arrival data slowly erodes the performance of the home berth
template.

5.2 Evaluating the template obtained from the robust model

We design another template, using the robust model outlined in the previous
sections. Instead of using lumpy cost to minimize the number of overlapping
vessels in the layout, we use the connectivity and delay cost estimation methods
proposed in this paper to distinguish between templates. By varying the weights on
the connectivity and waiting time cost components, we actually obtain different
home berth templates. The planners can then choose the right template to balance
the two objective functions in berthing operations.

Sensitivity to parameters Figure 12 shows the variation of connectivity and
waiting time cost components (obtained from our model) when the weights of
delays (time penalty), with respect to connectivity cost, are increased steadily. We
benchmarked against the template obtained using a deterministic approach, i.e.,
ignoring the information on the variance of arrival time data.

The templates obtained from the stochastic model performs consistently well in
terms of waiting time cost component for all time penalty weighing factors. By
increasing the weights for time penalty, the model is able to find new templates
with slightly better waiting time performance, but at the expense of a large increase
in connectivity cost.

Fig. 12 Comparing robust templates with varying penalties on time. For similar connectivity
cost, one can expect to have smaller expected delays while using a robust measure for the waiting
time objective
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The templates obtained from the deterministic model, however, is very
sensitive to the weights used for the time penalty cost function. This suggests that it
is very important that the parameters should be set correctly to ensure desirable
results from the proposed model. This behavior arises, we believe, because the
deterministic model is not able to capture the effect of delays propagation on the
rest of the vessels.

Resource conflicts Ideally, the home berth template should have a minimal
number of overlap between vessels. This is important because too many overlaps
(though quantified in the form of delays) would eventually make the real time
vessel deployment problem tough. Figure 13 shows the overlaps obtained from
templates produced from the robust model, while we vary the weights on the time
penalty cost function.

The robust model, as it is seen, is successful in keeping the number of overlaps
down. This is an inherent quality of the model rather than an exception since, while
evaluating the waiting time objective using a robust measure, the concerns posed
by overlaps are captured implicitly in the waiting time estimation in the model.

Performance of the robust model in simulation Figure 14 shows an efficient
frontier comparison for good templates. For the sake of fair comparison, we choose
the home berth plan that balances the connectivity cost and expected delay, one
from each model. The results indicate that the robust model is the better choice.
One could choose a minimum service level expected and could pick a template that
can achieve the service levels with smaller connectivity cost. For example, the
minimum connectivity cost that can be achieved with a service level of 90% is
836,446 and is possible using the robust template.

If one compares the delays experienced by an individual vessel, another
inherent property of the robust model is revealed. In the presence of traffic
congestion, the robust model would ensure that vessels are distributed so as to
minimize the delay propagation. The deterministic model fails to employ the
information from the immediate past. This means that specific vessels may suffer
recurring high delays when the deterministic home berth plan is used. This
observation is corroborated by Fig. 15. The delay experienced by individual
vessels fluctuates widely while using the deterministic measure for waiting cost
objective, whereas the fluctuation is more controlled while employing the robust
measure in evaluating a home berth template. The average delays in the

Fig. 13 Variation of overlaps vs weights in time penalty function
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deterministic model is 1.65 h with a variance of 2.75, whereas the average delay in
the robust model is 0.75 h with a variance of 1.13. Furthermore, 27 vessels in the
robust model’s template have an expected delay of 0 h, as opposed to 13 vessels in
the deterministic model.

5.3 Comparison to “optimal” template

It is desirable to obtain an absolute measure comparing the solution produced by
the robust model to the optimal template or with respect to a tight bound, as it is
important to understand how good the proposed robust model performs. To address
this concern, we create an artificial problem instance wherein a real-life berth
template is chosen and the connectivity data are modified so that the given template
is near optimal (i.e., vessels in close proximity will have higher number of
container exchanges). Vessels in the same berth have high connectivity (1,000),
vessels in adjacent berths have low connectivity (300), and the connectivity is 0 for
the rest.

We did not modify the arrival time information or adjust the layout of the
template. As the template has been deployed in practice, the planners must have
already visually inspected the layout and are satisfied that all potential bottlenecks
have been resolved from the template. Using these data, we create another home
berth template using the robust model.

Fig. 15 Expected delays for each vessel based on the templates

Fig. 14 Efficient frontiers for “good” templates
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The connectivity optimal template and the robust template are as shown in
Fig. 16. The respective efficient frontiers are as shown in Fig. 17. We observe that
even in this scenario, the efficient frontier obtained from the robust model slightly
outperforms the optimal template. The results are promising and one can expect to
obtain better dynamic performance in the actual deployment of the robust model.

6 Conclusion and extensions

In this paper, we have addressed an important tactical planning problem in
container terminal management, the home berth allocation. The problem is
modelled as a bicriteria optimization problem. We study and provide a framework
to deal with the trade-off between the operational cost and service levels demanded
by customers.

The combinatorial nature of the home berth problem poses a primary challenge
and we address it by modelling the problem as one of packing rectangles on a
cylinder. We motivate the use of sequence pair for defining the search space and
provide a series of extensions to adapt the approach for the problem presented
herein. The sequence pair approach naturally decomposes the home berth problem
into a space and time subproblem, and we use this insight to address the temporal
problem with random inputs. Because the home berth problem is tactical in scope,
the temporal data, specifically the vessel arrival time, is stochastic. To address this
inherent randomness, we borrow techniques from stochastic project scheduling and
explicitly derive an expression for expected delays.

In brief, we address both the combinatorial and stochastic nature of the problem
in our proposed framework and create robust home berth allocations, which
translates to better service levels and better resource management during actual
operations.

In addition, the paper provides extensive computational experiments and
simulations to analyze the effect of solving the problem in the robust home berth
allocation framework. The results show that the model cannot only effectively

Fig. 16 A tale of two templates
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measure the dynamic impact of the randomness but also has other advantages like
minimizing overlaps in the template.

To the best of our knowledge, this is the first paper that solves a berth template
problem and analyzes the impact of the template on the real time berth allocation.
However, our approach is limited by the fact that the template is relevant only when
a substantial number of vessels arrive periodically and within the same period. An
extension of the problem to create a template for vessels with different periods
would be interesting and we leave it for future research. We do not address the
problem of crane allocation in this paper. We leave this problem as an extension
and note that the crane allocation decision affects the port stay of vessels, and it
requires a more sophisticated model and careful study to analyze its impact on the
template and during dynamic deployment.

Recent trends in port management has been toward making the operations
flexible. This means that megaports would have to frequently redraw customer
contracts and appropriately change internal operations viz, yard plans. In such a
situation, flexibility in drawing reliable home berth allocation becomes ever more
important. We hope that with the model described in the paper, a berth operator can
create berth templates that can then be follow with minor modifications during
actual deployment.
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Mathematical modelling of container
transfers and storage locations at seaport
terminals

Abstract This paper models the seaport system with the objective of determining
the optimal storage strategy and container-handling schedule. It presents an
iterative search algorithm that integrates a container-transfer model with a
container-location model in a cyclic fashion to determine both optimal locations
and corresponding handling schedule. A genetic algorithm (GA), a tabu search
(TS) and a tabu search/genetic algorithm hybrid are used to solve the problem. The
implementation of these models and algorithms are capable of handling the very
large problems that arise in container terminal operations. Different resource levels
are analysed and a comparison with current practise at an Australian port is done.

Keywords Scheduling . Heuristics . Containers . Seaports . Genetic algorithms .

Tabu search

1 Introduction

The introduction of containerisation caused some dramatic changes to the layout at
seaport terminals. These changes include alterations to the storage area and the
introduction of specialised container handling equipment. However, that main
change has been in the storage area. Storage methods have undergone significant
modifications to take full advantage of the container-stacking ability. This means
more cargo can be stored at the port requiring a smaller area of land.

Berthing time of a container-carrying ship accounts for a considerable
proportion of its journey, which concerns shipping lines who wish to minimise
the waiting time and berthing time of the ships at the port. Decreasing the
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turnaround time at port would reduce the total travelling time of ships, thus,
reducing the cost of transporting containers.

There are no suitable tools available to assist the management in obtaining the
optimal efficiency of container terminals. It is necessary to develop a technique that
allows managers to better control the terminals by ensuring that container transfers
allow maximum throughput, taking into account operating constraints and service
reliability. Efficient transfers can defer or eliminate the need for significant
infrastructure investment. After achieving optimal efficiency, infrastructure
changes and investments can be more accurately considered.

Kozan and Preston (1999) use genetic algorithm (GA) techniques to reduce
container handling/transfer times at the multimodal terminals. When containers are
stacked to multilevels or high levels, more handling time is needed to retrieve a
container at the lower level of the stack. Total throughput time of containers as a
function of cranes, forklifts/highstackers and terminal transfer trucks are used to
measure the performance of the system. Kozan (2000) discusses the major factors
influencing the transfer efficiency of container terminals and a network model is
designed to analyse container progress in the system to minimize the total handling
and travelling time of containers. The author studies the flow of containers between
various locations (ships, berths and different sections of storage yard) of a
multimodal terminal and the expected number of handling due to the height of
container stacks. The paper considers various types of handling and transfer
equipment and the location of containers in the yard.

Kim and Kim (1999) study the routing of a single straddle-carrier in the storage
yard. A model is proposed to minimise the distance travelled by the straddle-
carriers between yard bays. Kim and Kim (2001) estimate the cost of terminal
operation. This paper also suggests a way to estimate the travel time of a transfer
crane between yard bays. Bish (2003) investigates the case when import containers
are loading to a ship and export containers are unloading to another ship at the same
time. The author proposes the “transshipment problem-based list scheduling
heuristic” for large size problems. Vis and Koster (2003) give a comprehensive
review on the literature relating into recent research on container terminal. The
authors suggest that future research needs to extend models for simple cases to a
more “realistic situation”. Steenken et al. (2004) give classification of problems
surrounding terminal operations and suggestions for future research. They also
point out that stacking and storage logistics are becoming increasingly important as
a result of growth in container traffic and are also getting more complex and
sophisticated.

Preston and Kozan (2001a) determine an optimal storage strategy for various
container-handling schedules. They minimise the ship turnaround time of container
ships by genetic algorithms and design a scheduling model and apply it to container
terminals taking into account factors such as container handling equipment, labour
resources, storage capacities and terminal layout. Major factors influencing
container transfer efficiency are analysed to optimise resource usage resulting in
lower operating costs while achieving a desired level of customer service. Tabu
search (TS) and genetic algorithm heuristics are used to compare the benchmark of
the Fisherman Island Container terminal in Australia. Similarly, optimising the
storage location to match a particular transfer schedule is developed by Preston and
Kozan (2001b) in a later study, and some improvement could be gained.
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Seaport systems are very complex and due to the dynamic nature of the
environment, a large number of timely decisions have to be continuously reviewed
in accordance with the changing conditions of the system. This complex system,
comprising many interrelated subsystems, was individually modelled with relative
ease in previous studies. It would be impractical to develop a comprehensive model
that incorporates each of the subsystems and the interactions between them. Our
approach models each subsystem separately with the addition of a structured
feedback system where the output of one model becomes the input of another,
thereby, capturing the interactions between them and the integration of two such
subsystems. This technique uses small initial improvements and provides feedback
to the other half of the problem, gradually increasing the accuracy of the solution as
the algorithm progresses. This is where an integrated model is used to combine two
separate models developed by Preston and Kozan (2001a,b). The aim of the model
is to simultaneously optimise both the storage locations and the handling
scheduling. This paper presents an innovative approach to solving an integrated
model for seaport systems.

Improvements are needed in these areas to reduce transportation time and
streamline the whole container transportation industry. This research examines the
sea interfaces, specifically the transfer of export containers from the storage area to
ships. However, the formulation and implementation of the model and algorithms
are capable of handling the very large container export and import problems that
arise in container terminal operations.

2 The problem

When a container vessel calls to port, the containers on board must be unloaded and
stored at the port until they are transported further by rail or road. The containers
must be stored in a manner so as to minimise the amount of handling needed to
place a container in the storage area and to remove it when needed. Therefore, the
problem being investigated is minimising the total throughput time which is the
handling time for all the containers from ships at berth and the transferring time of
the containers to the storage area. When dealing with export containers, the
problem would be reversed. That is, the handling time of the containers from when
it first arrives at the port until the ship carrying the containers departs from the port.

The method of assigning containers to yard machines for loading/unloading of
ships most widely employed is the use of “gut instinct” or heuristics. These
approaches may seem to be effective but may actually increase the berthing time of
the ships. A better assignment technique may involve an analytical model. Many
papers have considered analytical models to replace “gut instinct” methods of
loading and unloading containers.

The containers that are remaining must be placed in storage areas until they are
needed. The company does not know when or in what order the containers will be
called for loading or unloading. Therefore, they must stack the containers in a
manner so as to minimise the time taken to retrieve a container by considering the
storage area constraints. In the case of exports, the stevedoring company usually
knows when a container will depart as it arrives. The stevedoring company charges
a fee for containers that are delivered too early in respect to the departure time, and
after cut-off times, no containers are received.
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After the containers have been unloaded from the container vessel and placed in
the marshalling area, they are moved to the storage areas, Ajs, the multimodal
terminal truck area or road intermodal terminal as seen in Fig. 1. The containers are
moved from the storage areas to the road intermodal terminals by a multimodal
terminal truck for transferring to the hinterland. For use in the model, each of the
storage areas are segregated into s parts each, such as A11, A12, A13…, A1s, A21, A22,
A23 …,A2s ………………,and Aj1, Aj2, Aj3, …..Ajs.

3 The model

When a container ship arrives at the port, management allocates a number of yard
machines to service it. (i.e. transfer the import containers to storage or road/rail
links and the export containers from the storage area to the berth). The problem is to
determine the schedule in which to transfer the containers. The Container Transfer
Model (CTM) is used to handle this problem. The objective of CTM is to minimise
berthing time of the ship by considering the setup and travelling time for each
container. Therefore, CTM minimises the completion of the transfers from a
storage area to ship and/or ship to the storage area and determine the optimum
schedule.

The containers must be stored in a manner so as to minimise the amount of
handling needed to place a container in the storage area and to remove it when
needed. Therefore, the Container Location Model (CLM) is designed to determine

         SHIPS

Berthing and Marshalling Area  1   . . . . .

  . . . . .    . . . . .    . . . . .    . . . . .  

Berthing and Marshalling area I

Storage      Storage  Storage Storage 
   Area  A1      Area A2      . . . . . . . . . . . . . . . . . . . . . .    Area AJ-2 Area AJ-1

………

ROAD         Road Intermodal Terminal
.                 . . .  . . . . 

Departure

Arrival

Departure

Fig. 1 A layout of a Multimodal Container Terminal
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the optimal storage locations for various container-handling schedules by
minimising the total throughput time of containers.

The rationale behind integrating CTM and CLM is that it is pointless optimising
one when the other is far from optimal. While optimising the transfer schedule for a
given storage location, assignment will reduce loading time; it will not provide the
best solutions. Similarly, whilst optimising the storage location to match a
particular transfer schedule will offer some improvement, more could be gained.
This is where an integrated model is used. The aim of the model is to
simultaneously optimise both the storage locations and the handling scheduling.
The main advantage of using the integrated model over a single model is the
solution space. By solving the models iteratively as opposed to that in a single
model reduces the feasible search space. The high dependency of the variables and
parameters in the two reduced models would also lead to greater complexity of a
single model.

In essence, the container transfer and container location models are a
decomposition of the real problem. The approach is used to solve the decomposed
problem successively. The problem in solving the two subproblems independently
is that the decision variables for one are problem parameters (input) for the other.
Firstly, CTM is solved for container transfers using random initial storage
locations. The output, handling schedule, is then used as input for CLM. The
optimal locations of containers determined are then subsequently used as input to
CTM. This continues iteratively until a stopping criterion is reached. This
technique uses small initial improvements and gradually increases the accuracy of
the solution as the algorithm progresses.

The notation of the parameters and variables of the model are detailed below:

cw, rw The width of a column and row, respectively, in the storage
area

ti Time at which container i is scheduled for handling
(movement)

xi The row of the storage area partition where container i
is stored

yi The column of the storage area partition where container i
is stored

zi,t The vertical storage position of container i stored at time
ti; this is measured as the number of containers stored on
container i which delays access by handling equipment

lock This parameter is defined as the time required by the yard
machines to “lock on” to a container before picking it up; it
is assumed that the time to “unlock” a container after
moving it, is the same

move When a container is stored below one or more of the others
and is required for loading, the upper container/s is/are
moved to a temporary storage location to remove the
desired container; move is the time required moving
containers to the adjoining temporary position

maci The yard machine, container i is scheduled to be
transferred by

shipi The ship, container i is scheduled to depart on
departs Departure time of ship s
arrives Arrival time of ship s
vm Velocity of the yard machine m
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traveli The time required to transport container i between the
storage area, marshalling area, track area and/or intermodal
terminal

Traveli ¼ lock þ xi�rwþyi�cw
vm þ lock.

where m=maci.
This equation defines the travelling time for all containers;
the travelling time includes the time to lock and drop off the
container at the start and end of the journey

setupI This is the time required to move the container(s) stored
above the next scheduled container; if the desired container
is on top, there is no setup time. If the desired container is
not on top of the other containers, the setup time
incorporates the time required to move these containers to
an adjoining position

setupi ¼ 0 If zi;t ¼ 0
zi;t � 4 � lock þ 2 � moveð Þ þ 2 � lock þ move Otherwise

�
The setup time has two components one of these is “lock–
unlock” time and the other is moving time; in this case, the
yard machine must first move the top containers to a
temporary storage position, then move the desired container
from the storage area and finally, return the top containers
from the temporary storage position back to the storage area

Both separate models, CTM and CLM, use the same mathematical model;
however, the decision variables and input parameters change. In CLM xi, yi and zi,t
are decision variables and maci, and ti are input parameters and vice versa for CTM.

The objective of this model is to minimise the time ships spend at the berth. We
will minimise time spent transferring containers from a storage area to ship or ship
to the storage area. This transfer time is the sum of the setup and travelling time for
each container. As the idea is to minimise the completion of the transfers, we want
to find the minimum time for the yard machine that is in use the longest by adding
the transfer times of the containers allocated to it.

MinimiseMax
Mac

X
i maci¼macjf g traveli þ setupið Þ (1)

This equation is designed to find the maximum time any yard machine is in
service and minimise this value. This will minimise the time the ship spends at the
port and also minimise the total working time of all yard machines.

The location constraints in Eq. 2 are used to satisfy the physical condition that
only one container can be stored in a given storage position. The solution program
will either move one of the containers to another position or store them on the top
of the other. The initial storage locations are also checked for feasibility of the
height parameter, ensuring if zi,t>0; then, there is, in fact, containers occupying
those positions.

If xi ¼ xi0 and yi ¼ yi0 then zi;t 6¼ zi0;τ : 8 i 6¼ i0 (2)

Equation 3 defines the machine constraints which are used to satisfy the
physical condition that each yard machine can only be scheduled to handle only
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one container at a time. The inverse that each container is scheduled exactly once is
covered in the definition of the neighbourhood for tabu search.

If maci ¼ maci0 ; then ti 6¼ ti0 : 8 i (3)

Equation 4 is a modelling constraint used to modify the parameter, zi′,t, when
container i is stored above i′ and is scheduled to be loaded before container i≠i′ at
time ti.

If xi ¼ xi0 and yi ¼ yi0 and zi;t < zi0;t and ti < ti0 ; then zi0;t0 ¼ zi0;t � 1 8 ti0 � ti; i 6¼ i0

(4)

The ship constraint, Eq. 5, ensures that each ship has a time window [time
interval (arrives, departs)] within which loading and unloading service should begin
and end.

arrives þ
X

ijshipi¼sf g travelling timei þ setup timeið Þ � departs 8s (5)
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Fig. 2 Flow chart showing feedback for integrated iterative algorithm

93Mathematical modelling of container transfers and storage locations at seaport terminals



Time windows can be fixed where ships will arrive at a certain time and must
depart at a certain time or are flexible where ships will arrive at a certain time but
the departure date can be negotiated depending on the number of imports and
exports amongst other factors. Generally, the time window is fixed because this
allows the shipping company to know exactly what port costs are. With flexible
time windows, the shipping company may decide to pay extra to allow their ship to
be serviced (imports unloaded and exports loaded) quicker or to allow them to stay
at port longer.

While the model may seem similar to many job shop machine scheduling, it is
greatly different in the way the setup time is determined. The setup time in general
job shop machine scheduling problems is dependent only on the job immediately
preceding the job in question. In this model, the setup time is a dependent order of
scheduling of the containers (if any) initially stored on the top of the container in
question. For this reason, the solution is dependent on the order of the whole
sequence, not just the immediate predecessors of certain jobs.

The problem is known to be NP-hard; thus, its computation complexity
increases exponentially with the number of containers in the schedule. This makes
it difficult to solve in reasonable time with the current exact solution techniques,
(i.e. branch and bound or tree searches). This implies that for large-size, real-life
problems, heuristic techniques have to be used. Genetic algorithm has been applied
previously to this problem by Kozan and Preston (1999) with promising results, but
the solution times were found to be quite large in some cases.

4 Solution techniques

The two separate models are integrated into a single-solution algorithm and are
solved iteratively in an attempt to find a storage arrangement and handling schedule
to minimise the turnaround time. This iterative approach allows both models to be
optimised, thus, giving a better overall solution.

Two iterative techniques are applied to solve the integrated models. The first
one is the nonincreasing (normal) algorithm which has the same number of
“generations” within each iteration, and the second one is the increasing algorithm
which has the increasing number of “generations”within each iteration. The reason
to use nonincreasing and increasing algorithms is to speed up the process. The basis
behind this is that the first iteration uses a random initial handling schedule, and
there seems to be a little point in finding the best storage locations for this
obviously suboptimal schedule only for it to change dramatically after the first
iteration. Rather, this technique searches for smaller improvements that gradually

Table 1 The benchmark setup for comparison

Containers for export 500 TEU
Containers in storage area 500 TEU
Storage capacity 2,306 TEU
Yard machines used 10
Storage levels 3
Storage policy Fixed
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increase with each iteration to save needless fine-tuning of solutions in early
iterations. This procedure is shown in the following algorithm.

Algorithm

Step 0 The distance matrix of distances from various storage locations (in
Cartesian coordinates) to the berth space is generated. The storage
allocation is randomly generated. A random schedule for container
handling is input ensuring that only one container is scheduled for a
particular yard machine at a time. In the case of using genetic algorithm for
CTM, a number of these transfer schedules (chromosomes) are generated.
The iteration counter is initialised.

Step 1 Run CTM for N iterations. It would be N generations if GA is used rather
than tabu search.

Repeat
Step 2 CLM is then run using the best handling schedule found from Step 3 (Step

1 when i=1), Step 1 as the fixed handling schedule. This is run for M*i
generations, where i is the iteration number.

Step 3 Run CTM for N*i iterations. (It would be N generations if GA is used rather
than TS). This uses the best storage locations found as input and modifies
the previously determined solutions. If using GA, then it uses the previous
chromosomes as the starting point while TS uses the best solution found in
the previous iteration.

Table 2 Mean and standard deviation with varying numbers of chromosomes

Chromosomes Mean Standard deviation CPU Time(s)

10 694.97 7.6697 2,065
20 687.62 8.5158 4,704
26 696.63 7.1774 6,285
50 696.97 7.6934 13,778
100 694.93 8.0800 28,298
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Fig. 3 Transfer time vs number of generations for 20 independent simulations
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Step 4 The generation counter (i) is incremented.
Until either the iteration limit is reached or the successive solutions of CTM and
CLM have converged.
END

The use of M*i and N*i generations in Step 2 and Step 3 is to increase the
accuracy of the solution with further iterations while limiting the use of large
amounts of CPU time early in the process. The use of feedback from previous
iterations is demonstrated in Fig. 2.

The reserved locations (file A), best transfer solution (file B) and all transfer
solutions, i.e. chromosomes (file C), are saved after iteration 0. During the iterative
procedure, CLM saves the best location solution (file D), and all location
chromosomes (file E), and CTM saves the best transfer solution (file B) and all
transfer chromosomes, if using GA, (file C). For each iteration, CLM reads and
uses files A, B (as the fixed transfer schedule) and E (to continue with the same
chromosomes after iteration 1 and for subsequent iterations). Conversely, CTM
reads and uses files A, D (as the fixed storage locations) and C, if using GA (to
continue with the same chromosomes for subsequent iterations), or B, if using TS,
to continue with the same solution string for subsequent iterations.

Using data supplied by the Port of Brisbane it is estimated that an average of
486 containers is exported with each ship. It is found that each of these ‘average’
ships have a transfer time of 673 min. With this in mind and using current resources
and storage practices of the port, the CTM benchmark is given in Table 1.

Table 3 Mean and standard deviation with varying numbers of chromosomes

Chromosomes Mean Standard deviation CPU Time

10 679.39 5.5976 5,283
20 669.02 6.0675 12,751
26 667.49 6.2084 16,887
50 658.63 6.3207 32,751
100 648.55 6.6755 63,321
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Fig. 4 Transfer time vs number of generations for 20 independent replications
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The key to a successful application of GA or any heuristic, for that matter, is to
ensure that the solution parameters are optimised. This means that the crossover
rate, mutation rate, number of chromosomes and generation limit need to be
examined to find the best values to ensure that good solutions are found using a
minimum CPU time.

The number of chromosomes GA uses in each generation is critical. Too few
chromosomes will not allow enough of the search space to be examined while too
many will mean there are more initial solutions generated, crossover’s, repairs and
objective functions calculated, all of which increase the CPU time. Another
consideration is that more chromosomes mean that each chromosome has a smaller
probability of selection for reproduction. This is because roulette wheel selection is
used where each chromosome has a probability inversely proportional (due to a
minimisation problem) to its objective function value.

The model was simulated 50 times with varying number of chromosomes and
the results were compared. The mean of the best solutions and standard deviations
were calculated and are tabulated in Table 2, along with the CPU time for a
replication.

As seen in Table 2, 20 chromosomes is what are best to use as it has a lower
mean (but higher standard deviation) and requires less CPU time than all but ten
chromosomes. It is thought, however, that ten chromosomes are too few, so, it is
disregarded.

Analysis was also performed on the number of generations required and
demonstrated in Fig. 3. The figure shows transfer time vs number of generations for
20 independent replications. It is seen that the curves flatten out (as expected) after
about 500 generations, and it is felt that the little improvement found after that
point does not justify spending more time to find the solution. With this in mind, it
was decided that 500 generations would be used as the generation limit.

The crossover rate was the next parameter examined. Crossover rates were
trialled with 0.005 increments in the range 0.05–0.99. It is clearly seen that a
crossover rate of 0.50 provides, on average, the lowest solution. However, there
isn’t a significant difference amongst any of the solutions. It was decided, however,
to use a crossover rate of 0.50.

The other parameter examined is the mutation probability. The mutation
parameter was varied in the range, 0.01–0.99. Although little overall difference
was observed for mutation rates above 0.25, the value of 0.99 provided the best
overall average.

Table 4 Mean and standard deviation with varying crossover rate

Crossover rate Mean Standard deviation

0.05 673.61 5.7913
0.10 668.96 6.9172
0.25 662.97 7.0655
0.50 658.38 6.7707
0.75 653.59 7.5916
0.90 652.61 6.2084
0.95 654.83 6.0882
0.99 654.48 6.2459
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The CLM was run 50 times using the benchmark parameters for CLM with
varying number of chromosomes. The average of the best solution found in each
replication and standard deviations were calculated and are tabulated in Table 3,
along with the CPU time for a replication. Therefore, using 100 chromosomes is
significantly better as it has a lower mean but requires more CPU time.

Analysis was performed on the number of generations required. To demonstrate
this, plots of transfer time vs number of generations for 20 independent replications
is shown in Fig. 4.

It is seen that the curves flatten out (as expected) after about 300–500
generations. With a view to the CPU time, however, it is decided that for further
analysis, 350 would be the generation limit for the 20 replications shown in Fig. 4.
The mean after 350 iterations is 654.6 while after 1,000 iterations it dropped to
649.2, but this required over 11 more hours of CPU time.

Crossover was the next parameter to be optimised, with an examined rate
between 0.05 and 0.99. These are tabulated in Table 4, which shows a steady
decrease in the range, 0.05–0.75 and a flattening from 0.75–0.99. The best results
were those with a crossover rate of 0.9, and thus, this was selected to be used.

The final parameter examined is the mutation probability. The mutation rate
parameter was varied in the range, 0.01–0.99 as shown in Table 5. It was found that
there is a little difference between a mutation of 0.05 and 0.25; however, 0.05 gave
marginally better solutions so the mutation rate was set at 0.05.

5 Results

This technique has been coded in C++ and is setup to use either tabu search or
genetic algorithm to optimise CTM and genetic algorithm for the CLM. There is
the option of inputting a file containing “reserved locations” that cannot be used for
storage. These are locations that either currently have a container stored there or
reserved for another incoming container that will not be exported on the ship under
consideration. In this paper, the reserved locations are randomly selected.

Table 5 Mean and standard deviation with varying mutation probability

Mutation probability Mean Standard deviation

0.01 655.17 7.0394
0.05 651.45 6.1557
0.10 652.05 5.9576
0.25 652.61 6.2084
0.50 655.05 5.7171
0.75 655.73 5.8564
0.90 656.60 6.2172
0.95 657.27 5.7169
0.99 658.04 5.7517
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5.1 Genetic algorithm for CLM and CTM

Preliminary results indicate that about ten iterations of each of the CLM and CTM
are needed before the solutions settles to a minimum value. Also, the algorithm
ends with a CTM because its fitness function is higher, due to not including the
setup time for containers “shifted” during mutation for the current generation. This
was done to reduce CPU time by not having to shift down (i.e. drop containers so
they are not floating) and recalculate storage depth as often. In effect, this gives a
lower bound fitness for the solution. Figure 5 shows ten replications of the normal
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and increasing algorithms for the integrated CLM–CTM model using the
benchmark problem.

It is seen that the final solution is generally in the range, 650–670 with a few
outliers. The outliers are most likely due to using different random “reserved
locations” for each replication. This was done to see how the algorithm would
perform in a variety of situations. Overall, the increasing algorithm had a mean of
660.44 and a standard deviation of 4.871, and the normal algorithm had a mean of
657.80 and a standard deviation of 8.607.

As with the decomposed models, analysis was performed to assess changes to
the port infrastructure on the solution time window. Firstly, a comparison was made
varying the maximum height. The results are shown graphically in Fig. 6. Figure 6
shows two distinct curves. The curve for the increasing algorithm produced an
exponential decrease as the maximum storage height decreased. Intuitively, this is
because it reduces the chance of having to perform extra container moves to access
the desired container. In practice, however, this may not be feasible, as it requires
much more additional storage area. The other curve for the normal or
nonincreasing algorithm shows three levels to be the minimum with an increased
average for the other levels. One possible reason for this may be the possible range
of solutions that is reduced in the two-level scenario (1,536 total storage positions
of which 500 are reserved), so the solution strings would be more alike.
Consequently, the solution becomes more similar faster so that it gets stuck in a
genetic hole in early iterations and cannot escape in later iterations. The only
method of escape is mutation, but the reduced number of storage spaces limits the
number of feasible mutation alternatives to just 536 (1,536—500 reserved—500 in
use), many of which would be undesirable from an improvement point of view. The
increasing algorithm avoids this, as it would not go as deep into the hole in the
earlier iterations. This phenomenon would also explain the higher variation in
solutions for the nonincreasing algorithm, as it has a greater tendency towards very
good or very bad solutions with less mid-range solutions.
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Sensitivity analysis was also performed to analyse what effect changing the
number of assigned yard machines has on the loading time. Figure 7 shows,
graphically, these results. This shows an exponential growth in the average loading
time as the number of available yard machines is reduced. This figure also shows a
little difference in the averages between the increasing and normal algorithms, but
the standard deviation of the increasing algorithm is generally half that for the
nonincreasing algorithm.

5.2 Genetic algorithm for CLM and tabu search for CTM

This integrated model is similar to that outlined in the previous section but uses
tabu search to solve the Container Transfer Model. Iteration 0 (see Fig. 2) still uses
GA, however, to “seed” the initial iteration.

Figure 8 plots ten replications of this integrated model for increasing and
normal algorithms. Figure 8 shows that most of the final solutions were again in the
range, 650–670; however, there was less variation compared to the technique used
above. Once again, solutions were found to converge after ten iterations (steps 11–
20 in the graph). A typical execution would require around 4 h CPU time.

Once more, sensitivity analysis was performed to analyse the differences due to
the changing of the maximum storage height. The results are graphed in Fig. 9.
This shows that for the increasing algorithm, the average solution time increases
slightly as the maximum storage height increases. The nonincreasing iterative
algorithm produced a curve showing that the averages decreased as the maximum
storage height decreased until the two-level storage that again provided a higher
average. This is due to less storage locations, resulting in a smaller solution space
for CLM and the algorithm zooming in too quickly in early iterations.

The effect of changing the number of yard machines is shown in Fig. 10. This
shows a polynomial increase as the number of yard machines decrease. Obviously
the more yard machines available decreases the amount of work to be done by each
machine, but halving the number of machines requires less than twice the time.
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6 Comparison

To assess the merits of the seven algorithms covered and to determine the best
approach a comparison of the three individual (i.e. disaggregated) models and the
four integrated methods. For the following tables, GA for CLM is designated as
approach 1, GA for CTP as approach 2, TS for CTP as approach 3, increasing
iterative search using GA as approach 4, normal iterative search using GA as
approach 5, increasing iterative search using GA and TS as approach 6 and normal
iterative search using GA and TS as approach 7.

Table 6 provides results for the benchmark problem for the various solution
approaches. Table 6 shows that the integrated algorithms had significantly less
variation (observed by smaller standard deviation) and all averaged around
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660 min. The GA for CLMmodel provided better average, but like all the separated
models, the standard deviation was much greater. The varying of maximum storage
height had a different effect for each of the solution techniques. These are tabulated
in Table 7.

Generally, the integrated algorithms found better solutions than the single
model solutions, with the exception of GA for CLM with three levels of storage
and TS for CTM with two levels of storage. The integrated algorithms also had
much less variation in solutions with the standard deviation less then 10 in all cases,
while it was often over 20 for the separated models.

This is mostly due to the integrated algorithms being able to work with a poor
initial random location configuration and improve this to match in with the transfer
schedule and vice versa, with a poor initial transfer schedule. In a sense, when the
integrated methods started with bad initial solutions, they were able to find more
improvement than the separate models. Of the iterative searches for the integrated
models, GA solving both CLM and CTM provided better solutions.
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Table 8 shows the mean and standard deviation of the seven approaches of
solutions with varying numbers of allocated yard machines. Again, it is observed
that the iterative searches provided more stable solutions (i.e. smaller standard
deviations; so, it is more likely to converge to a similar solution for different
replications) and were better than the CTM solutions. However, the CLM solutions
were found to be better for all but eight-yard machines and in some cases,
significantly so, and provided a lower bound to the solution value. The CTM
fitness values are accepted as more accurate which is why the iterative searches
concluded with a CTM solution.

7 Conclusion

This paper outlined a novel iterative search technique to solve an integrated model
composed of two sub-models with dependent decision variables. An increasing
algorithm, where the generations within each iteration increase, is compared with a
nonincreasing approach. A genetic algorithm is also compared with a tabu search/
genetic algorithm hybrid. This iterative search was used to solve two models, CLM
and CTM, using location and transfer feedbacks for successive iterations. The
integrated iterative algorithm generally provided better solutions than those found
using the only individual models, and the solutions were much more stable with
less variation in the results.

Overall, the GA technique produced better results than the TS/GA hybrid, and
in most cases, the nonincreasing algorithm performed better than the increasing

Table 7 Variation of levels across the seven approaches

Levels Approach

1 2 3 4 5 6 7

2 Average 661.673 637.556 657.011 654.714 661.257 663.175 665.133
St. dev. 16.729 22.228 20.125 6.561 3.562 5.177 5.412

3 Average 644.861 671.831 667.439 660.443 657.798 663.265 662.298
St.dev. 17.535 20.979 20.986 4.871 8.607 6.306 6.285

4 Average 700.371 683.485 671.910 662.492 660.458 663.592 662.983
St.dev. 16.370 20.750 21.913 6.185 8.450 9.047 8.016

5 Average 717.288 680.485 669.513 662.967 661.550 665.025 664.325
St.dev. 23.342 21.788 20.501 6.013 8.776 9.404 5.376

Table 6 Solutions for the benchmark problem

Approach

1 2 3 4 5 6 7

Average (min) 644.861 671.831 667.439 660.443 657.789 663.265 662.298
St. dev. (min) 17.535 20.979 20.986 4.871 8.607 6.306 6.285
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algorithm. It was found that reducing the maximum storage height resulted in a
reduction in the turnaround time, although the nonincreasing algorithm performed
worse for the two-level storage. A polynomial reduction in average throughput
time resulted when the number of yard machines increased. Overall, it is
recommended that the nonincreasing GA algorithm (approach 5) be used as it
provided the best solutions for a wide range of infrastructure configurations.
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An optimization model for storage yard
management in transshipment hubs

Abstract This paper studies a yard storage allocation problem in a transshipment
hub where there is a great number of loading and unloading activities. The primary
challenge is to efficiently shift containers between the vessels and the storage area
so that reshuffling and traffic congestion is minimized. In particular, to reduce
reshuffling, a consignment strategy is used. This strategy groups unloaded
containers according to their destination vessel. To reduce traffic congestion, a new
workload balancing protocol is proposed. A mixed integer-programming model is
then formulated to determine the minimum number of yard cranes to deploy and
the location where unloaded containers should be stored. The model is solved using
CPLEX. Due to the size and complexity of this model two heuristics are also
developed. The first is a sequential method while the second is a column generation
method. A bound is developed that allows the quality of the solution to be judged.
Lastly, a numerical investigation is provided and demonstrates that the algorithms
perform adequately on most cases considered.

Keywords Port operation . Storage allocation . Mixed-integer programming .

Heuristic algorithm . Column generation

1 Introduction

Container traffic has been growing steadily and this trend is expected to continue
(Yun and Choi 1999; Ryan 1998). A new generation of container vessels that have
a greater carrying capacity and scarcity of the land will put an enormous pressure
on port operators to develop effective container handling systems. High-density,
automated container handling equipment is a potential candidate for improving the
performance of container terminals and meeting the challenges of the future in
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marine transportation. However, in order for these capital intensive equipments to
function effectively, decision planning tool for integration and optimization
becomes crucial.

A container terminal is the place where vessels dock on a berth and containers
are loaded and unloaded. Based on the types of container handling operations, a
container terminal can be roughly divided into two main areas, the quayside for
berthing vessels and the storage yard for holding containers (as shown in Fig. 1).
The quayside is made up of several berths for vessels to moor. The vessels moored
at the berths are served by quay cranes (QCs) which load and unload containers.
The storage yard is typically divided into several blocks where the containers are
stored. Each container block is served by several yard cranes (YCs). The storage
yard serves as an interface for loading (unloading) containers to (from) vessels to
facilitate export (import) containers and to transship containers between vessels. To
transport containers between the quayside and the storage yard, vehicles such as
prime mover, or straddle carriers are used. A schematic diagram of the typical

Fig. 1 A schematic diagram of a container terminal
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processes in a container terminal is shown in Fig. 2 (Vis and De Koster 2003). The
container activities can be categorized into three types: import, export, and
transshipment activities. For export activities, the containers are brought in by
shippers and will be stored at their designated locations in the storage yard. When it
is time to load the containers, they are retrieved from the stored location and
transported by vehicles to the quayside. The QCs then remove the containers from
the vehicles and load them onto the vessels. The processes for import activities are
similar but they are done in the reverse order. For transshipment activities, the
processes are a little different. The containers will be stored in the storage yard after
they are unloaded from the vessel and will be finally loaded onto other vessels. In
this paper, our study is focused on the yard storage allocation problem in a
transshipment hub where transshipment of containers is the major activity and the
yard activity is intensive. This transshipment port uses prime mover as the main
vehicle to transport the containers.

The storage yard plays a pivotal role in transshipment hubs. Most containers
unloaded from one vessel are stored in the storage yard and are eventually loaded
onto other vessels. Multi-level stacking of containers is a common practice when
the volume of transshipment activities is intensive and the land is scarce. This can
lead to high concentration of activities within a small area and may likely cause
traffic congestion of prime movers. Another result of over stacking is unproductive
reshuffles of containers. Traffic congestion and reshuffles can reduce the
productivity of resources, which include prime movers, YCs, and QCs. Related
works on the yard storage allocation problem is summarized as follows.

The efficiency of stacking depends greatly on the strategies of allocating storage
space to arriving containers. Chen (1999) distinguishes several major factors that
influence operational efficiency and cause unproductive container movements in
terminal operations. Chung et al. (1988) propose the use of buffer space to increase
the utilization of the material handling equipment and reduce the total container
loading time. Kim andKim (1999) propose a segregation strategy to allocate storage
space for import containers. In Chen et al. (2000) the storage space allocation
problem is examined with a time-space network with the objective of allocating
containers to storage locations in advance. Taleb-Ibrahimi et al. (1993) describe
handling and storage strategies for export containers and quantify their performance
according to the amount of space and number of handling moves required. Kim
(1997) proposes a methodology to estimate the expected number of reshuffles to
pick up an arbitrary container and the total number of reshuffles to pick up all the
containers in a bay for a given initial stacking configuration. Kim and Bae (1998)
discuss how to reshuffle export containers in container terminals. Kim et al. (2000)
propose a methodology to determine the storage location of an arriving export
container by considering its weight. Kim and Park (2003) discuss how to allocate
storage space for outbound containers that will arrive at a storage yard. Zhang et al.
(2003) study the storage space allocation problem in the storage yard of terminals.
Chen et al. (1995), Davies and Bischoff (1999), and Scheithauer (1999) study a
strategy called consignment. This strategy attempts to store containers with the
same destination, contents, and loading time together in some dedicated storage
area. Crainic et al. (1993), Cheung and Chen (1998), and Shen and Khoong (1995)
look into the yard storage allocation problem for empty containers.

From the literature, it can be seen that various problems associated with yard
operations have been addressed. However, these papers do not sufficiently address
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the particular needs of transshipment hubs, but more on the general terminals
which emphasize on import and export activities. For transshipment hubs, the
loading and unloading activities are both concentrated and need to be considered at
the same time. This makes the planning problem much more challenging compared
to port planning for general terminals where the loading and unloading activities
can be considered independently by having different dedicated storage areas for
import and export activities.

If the yard storage allocation problem is not handled properly at a transshipment
yard, the problems of reshuffling and traffic congestion might arise. In the port that
we study in this paper, the consignment strategy is used. This strategy stores export
and transshipment containers with the same departing vessel together at the same
designated storage areas. Import containers are not considered in this study as the
port operator does not mix the storage area of the import containers with the export
and transshipment containers. This strategy helps to reduce the reshuffling level to
a negligible level. To handle the traffic congestion, a new workload balancing
protocol is proposed and the details will be discussed in Problem description.

The rest of this paper is organized as follows. Problem description provides the
detailed description of the problem. Model development describes the model
development. Numerical experiments and the computational results are presented
in Numerical experiments. Two heuristic algorithms are proposed and implemented
in Heuristic algorithms. Conclusions and future research give conclusions and some
future research topics.

2 Problem description

The port that we are studying handles a high volume of transshipment containers.
One of its competitive edges is that the port is able to turn around the vessels within
a short time. At the planning stage, this translates to the requirement for the port
operator to allocate the incoming transshipment and export containers to the
storage yard such that the traffic congestion can be kept at a minimal level.

To manage the yard allocation process more efficiently, the port operator
organizes the storage yard into several blocks as shown in Fig. 3. The depth of each
block is six containers and the length of the block is 40 containers. Every block is
further divided into five subblocks, where the length of each sub-block is eight
containers. The stacking height is five containers (which we call tier). The basic
unit for the yard storage allocation process is at the subblock level, i.e., for the
consignment strategy, we will assign the containers that are going to the same
departing vessel to the same subblocks. There is an assigned lane for the movement
of containers by prime movers (the “truck path”) and a separate “passing” lane
strictly to allow trucks to pass each other when required. The passing lane is
narrow, and it is shared by yard cranes.

Traffic congestion may happen when too much workload needs to be handled
within a small area at the same time. For example, if there are a lot of container

Arrival of
vessels

Unloading and loading
of  vessels

Transport of
containers

Storage of containers
in the storage yard

Customer
retrieval

Unloading Loading

Fig. 2 A flow diagram demonstrating the interaction between container terminal processes
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movements in subblocks 7 and 12 (see Fig. 3), then there will be many prime
movers waiting or moving nearby. This will cause traffic congestion. Similarly, if
the workload in subblocks 6 and 7 is high, then the prime movers waiting at sub-
block 7 may block other prime movers from going to subblock 6 as they share the
same path.

To ensure smooth flow of traffic, the port operator has imposed several
restrictions during the planning stage. Among them are:

1. When a subblock is in the loading process, its neighboring subblocks should not
have any loading or unloading activities.

2. There should not be two or more neighboring subblocks which are having high
unloading activities.

To incorporate these restrictions into the planning model, we introduce a “high
workload” rule/protocol and a vicinity matrix.

The protocol of high-low workload is to ensure that at any given time, many
yard cranes will be highly utilized as the jobs are concentrated as they do not need
to move around frequently to other subblocks to perform jobs. The ranges of high
workload and low workload do not overlap. For example, the range of high
workload is set between 50 and 100 containers per shift, while the low workload is
set between 0 and 20 containers per shift by the port operator.

To capture the possible traffic congestion between subblocks, we use a vicinity
matrix to represent the neighborhood structure between different sub-blocks. A
sub-block is a neighbor if it is adjacent. Adjacency of subblocks inherently implies
that trucks must use the same path. For example, subblock 7 is said to be a neighbor
of subblocks 6 and 12. Subblock 7 is not a neighbor of subblock 2 even though they
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are back to back. In a vicinity matrix, a value of 1 means that the subblocks are
neighbors to each other, and 0 means that they are not. For the layout shown in
Fig. 3, the vicinity matrix is given in Table 1. As the vicinity matrix is symmetric,
only the top right half is shown. The workload of a neighboring subblock should be
low if the neighbor has been assigned a high workload.

For this problem, the port operator has pre-assigned a set of subblocks for each
departing vessel based on their experience (this is also known as the yard template).
Given this set of assigned subblocks, we must determine the minimum number of
yard cranes to deploy and how many transshipment and export containers should
be assigned to each subblock in each shift. The total loading activities in each
subblock can be derived from the above decisions. (To simplify the discussion, in
the subsequent section, we will refer to “containers” as both the transshipment and
export containers, unless specified otherwise.) Currently, the port operator does not
have any formal planning model to determine the allocation, and its decisions are
based on intuition and past experiences. As a means to remedy this, a mixed integer
programming model that incorporates the concepts discussed above is developed.
The detailed model will be discussed in the next section.

3 Model development

In this section, the storage allocation problem is formulated as a mixed-integer
linear programming model.

Table 1 Part of the vicinity matrix for the yard configuration shown in Fig. 2

Rii' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 1 0 0 0 0 0 0 0 0
8 0 1 0 0 0 1 0 0 0 0 0 0 0
9 0 1 0 0 0 1 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0
12 0 1 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0
14 0 1 0 0 0 0 0
15 0 0 0 0 0 0
16 0 1 0 0 0
17 0 1 0 0
18 0 1 0
19 0 1
20 0
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3.1 Modeling assumptions

The following assumptions are made when developing the storage allocation
model.

1. The time span of the model is 7 days with three planning periods in each day.
Each planning period corresponds to an 8-h working shift.

2. We assume that the amount of containers arriving in every shift is given and will
repeat weekly (this implies the planning period can be wrapped around). The
actual number can vary, but for planning purposes, it is reasonable to assume
that it is deterministic and an input to the model.

3. At any given time, if the subblock is during the loading activity, then, a
dedicated yard crane will be assigned to that subblock as loading activities have
higher priority.

4. Two different types of containers are handled in a container terminal. They are
20 ft containers and 40 ft containers. As one subblock consists of a few lanes, it
is possible to have a mixture of different types of containers in one subblock.
For simplicity, we assume they can be stored in the same subblocks. However,
the model can easily be modified to handle the dedicated subblock for different
types of containers.

5. All containers that arrive in a given shift will be stored in a subblock until they
are loaded onto the departing vessel. The loading activities at any subblock
have to be completed within two shifts because this is a requirement set by the
port operator to reflect its current service level.

6. A yard crane assigned to a particular block should work until the end of the
shift.

3.2 Notations

The model parameters are as follows:

I The number of sub-blocks under consideration
J The number of vessels under consideration in the planning horizon
K The number of blocks under consideration
T The number of shifts under consideration
Ni The set of subblocks that are neighbors of subblock i, 1 ≤ i ≤I
Vj The set of sub-blocks that are reserved for vessel j, 1 ≤ j ≤ J
Bk The set of subblocks that belong to block k, 1 ≤ k ≤ K
WXjt The number of 20-ft containers of the departing vessel, j, which arrive in

shift t. It is given and treated as input of the model, 1 ≤ j ≤ J, 1 ≤ t ≤ T
WYjt The number of 40-ft containers of the departing vessel, j, which arrive in

shift t. It is given and treated as input of the model, 1 ≤ j ≤ J, 1 ≤ t ≤ T
CS The capacity of each subblock in terms of TEUs, which is 240 (5 tiers×6

lanes×8 slots) in this model
CC The capacity of each yard crane in terms of container moves per shift,

which is 100 in this model
Ck The maximum number of yard cranes allowed to reside in block k at any

one time, 1 ≤ k ≤K
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NLkt The number of subblocks in loading process in block k in shift t, 1 ≤ k ≤K,
1 ≤ t ≤ T

HL The lowest value that a high workload can take
HU The highest value that a high workload can take
LL The lowest value that a low workload can take
LU The highest value that a low workload can take

Subscript, i, is for subblock, j, for vessel, k, for block, t, for shift
The decision variables are as follows:

xit The number of 20-ft containers that are allocated to subblock, i, for unloading
in shift t, 1 ≤ i ≤ I, 1 ≤ t ≤ T

yit The number of 40-ft containers that are allocated to subblock, i, for unloading
in shift t, 1 ≤ i ≤ I, 1 ≤ t ≤ T

hit =1 means that the total workload (xit+yit) that are allocated to subblock, i, for
unloading in shift, t, is high, that is Hl ≤ xit+yit ≤Hu, 1 ≤ i ≤ I, 1 ≤ t ≤ T
= 0 means that the total workload (xit+yit) that are allocated to subblock, i, for
unloading in shift t is low, that is Ll ≤ xit+yit ≤ Lu, 1 ≤ i ≤ I, 1 ≤ t ≤ T

dkt The number of yard cranes allocated to block, k, for unloading in shift t,
1 ≤ k ≤K, 1 ≤ t ≤ T

3.3 Model formulation

Managers in container terminals always attempt to reduce costs by efficiently
utilizing resources, including berths, storage yards, quay cranes, yard cranes, prime
movers, and human resources. In the proposed model, the total number of crane
shifts required to handle all the workload should be minimized. It is not to
determine the necessary number of yard cranes that should be available in the
storage yard for the terminals. However, the operating cost should be reduced by
putting less yard cranes in use. Each crane shift corresponds to one active yard
crane in one shift. The model is formulated as follows.

SAPð ÞMin w ¼
XK
k¼1

XT
t¼1

dkt (1)

Subject to: X
i2Vj

xit ¼ WX jt For all 1 � j � J ; 1 � t � T (2)

X
i2Vj

yit ¼ WYjt For all 1 � j � J ; 1 � t � T (3)
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XT
t¼1

xit þ 2 yitð Þ � CS For all 1 � i � I (4)

XT
t¼1

xit þ yitð Þ � 2CC For all 1 � i � I (5)

X
i2Bk

xit þ yitð Þ � dkt CC For all 1 � k � K; 1 � t � T (6)

HLþ ðLL� HLÞð1� hitÞ � xit þ yit � LU þ ðHU � LUÞhit For all 1
� i � I; 1 � t � T

(7)

xi0t ¼ 0; yi0t ¼ 0 For all i0 2 Ni; t 2 Li; 1 � i � I (8)X
i02Ni or i0¼i

hi0t � 1 For all 1 � i � I; 1 � t � T (9)

dkt þ NLkt � Ck For all 1 � k � K; 1 � t � T (10)

xit � 0 yit � 0 For all 1 � i � I; 1 � t � T (11)

hit 2 0; 1f g For all 1 � i � I;� t � T (12)

dkt Integer For all 1 � i � I; 1 � k � K; 1 � t � T (13)

Constraints 2 and 3 ensure that all the workload unloaded from each vessel in
each shift will be allocated to corresponding storage locations. Constraint 4
ensures the capacity restriction of subblocks. Constraint 5 ensures that the
containers in each subblock should be loaded to the vessels in a certain time span
(two shifts in the proposed model). Constraint 6 ensures that the yard cranes for
unloading in each block can handle all the unloading workload in each shift.

A subblock with high unloading workload can share a yard crane with
neighbors with low unloading workload. Also, several subblocks with low
unloading workload can share a yard crane. To make full use of yard cranes, the
workload allocated to each subblock in each shift should be either high or low. In
this model, constraint 7 is used to ensure this restriction. Constraint 8 ensures that
all the neighbors of a loading subblock cannot accept any containers arriving in that
shift. Constraint 9 ensures that high unloading workload cannot be allocated to two
subblocks that are neighbors to each other in the same shift.

As a result of the limitation of the length of the chassis trailer and due to safety
consideration, each block can hold, at most, a certain number of yard cranes at any
one time. One yard crane is required for each loading subblock, and hence, the
number of loading subblocks is exactly equal to the number of yard cranes assigned
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to that block for loading. Constraint 10 ensures this restriction. Constraints 11, 12
and 13 are nonnegative and integer restrictions.

The model is not easy to solve because the MIP structure is poor and there are
too many integer and binary variables. In the next section, the problem will be
solved with CPLEX 8.1, a commercial software package.

4 Numerical experiments

In this section, the proposed storage allocation model (SAP) is first tested using two
sets of input data for the simplified small-scale problem. Then it is used to solve a
large-scale problem close to a moderate terminal.

4.1 Small-scale problem experiment

4.1.1 Input data

For the small-scale problem, there are eight blocks arrayed in four rows and two
columns in the storage yard which is shown in Fig. 4. A vicinity matrix can be
determined easily from the yard configuration.

It is assumed that there is exactly one vessel being loaded in each shift. The
lowest and highest value that a high workload can take are 100 and 200,
respectively, and those for a low workload are 0 and 100, respectively. The capacity
of 1-yd crane is 200 container moves per shift. The maximum number of yard
cranes that can reside in each block is two at any one time. Only five shifts are
considered in the model. The parameters are drawn from the real practice with
some minor changes to make the model feasible.

1 5432

6 10987

11 15141312

21 25242322

16 20191817

31 35343332
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26 30292827

36 40393837A4 B4

Passing lane Truck path

Fig. 4 Yard configuration for the small-scale problem
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4.1.2 Implementation

The proposed model is implemented in C++ and run on a Pentium IV computer
(CPU: 2.4 GHz, Memory: 512 M). The mixed-integer programming model is
solved using CPLEX 8.1 with concert technology, a commercial software package
with C++ optimization modeling library and interface.

The computational results are summarized in Tables 2 and 3. Two sets of input
data are used to conduct the small-scale problem experiments. The utilization is
defined as the ratio of the total storage space occupied by all the unloading
containers to the total storage space in the storage yard.

As shown in Tables 2 and 3, for relatively low utilization scenarios (with
utilization less than 0.45), the optimal solution can be obtained easily. For moderate
utilization scenarios (with utilization between 0.45 and 0.60), it will take a longer
time to solve as there are too many choices to allocate containers to their
destination storage locations. In addition, too many choices can result in a very
large branch and bound tree, which may cause the computer to run out of memory
(for example, case 1 with utilization of 0.45). For high utilization scenarios (with
utilization greater than 0.90 for case 1 and 0.70 for case 2), the problem is prone to
be infeasible as the capacity constraints cannot be satisfied. The different results
indicate that the proposed model is data dependent.

Table 2 Results of SAP for small-scale problem (case 1)

Utilization Computation time (s) Solution status Objective Value (# of YCs)

0.05 1 Optimal 10
0.10 1 Optimal 10
0.15 1 Optimal 10
0.20 1 Optimal 10
0.25 1 Optimal 10
0.30 274 Optimal 15
0.35 340 Optimal 15
0.40 1 Optimal 15
0.45 34,196.03 Out of memory 17.56 (LB=20, gap=12.18%)
0.50 3,833 Optimal 20
0.55 110 Optimal 21
0.60 13,304 Optimal 25
0.65 114 Optimal 25
0.70 6 Optimal 25
0.75 11,602 Optimal 30
0.80 6 Optimal 30
0.85 328 Optimal 35
0.90 16 Optimal 35
0.95 1 Infeasible –
1.00 1 Infeasible –
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4.2 Large-scale problem experiment

4.2.1 Input data

For the large-scale problem, there are 64 blocks arrayed in eight rows and eight
columns. The layout of the yard configuration of the experiment problem is shown
in Fig. 3. The time horizon is 7 days with three shifts in each day. The scale of the
problem (around five million TEUs) is comparable to a section of the terminal that
we are investigating.

The lowest and highest value that a high workload can take are 50 and 100,
respectively, and those for low workload are 0 and 20, respectively. The capacity of
1-yd crane is 100 container moves per shift. The maximum number of yard cranes
that can reside in each block is two at any one time. The parameters are fairly
reflective on any terminal with high traffic intensity.

4.2.2 Implementation

The large-scale problem is also implemented in C++ and run on the same computer
as that for the small-scale problems. The computational results are summarized in
Table 4.

As shown in Table 4, the large-scale problem cannot be solved to optimality in a
reasonable time and always terminates as a result of insufficient memory. The
results just before running out of memory are presented. In addition, for scenarios

Table 3 Results of SAP for small-scale problem (case 2)

Utilization Computation time (s) Solution status Objective value (# of YCs)

0.05 1 Optimal 10
0.10 1 Optimal 10
0.15 1 Optimal 10
0.20 1 Optimal 11
0.25 1 Optimal 12
0.30 1 Optimal 13
0.35 2 Optimal 15
0.40 91 Optimal 17
0.45 1 Optimal 18
0.50 936 Optimal 21
0.55 643 Optimal 23
0.60 106 Optimal 23
0.65 36 Optimal 27
0.70 26 Optimal 28
0.75 1 Infeasible –
0.80 1 Infeasible –
0.85 1 Infeasible –
0.90 1 Infeasible –
0.95 1 Infeasible –
1.00 1 Infeasible –
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with utilization between 0.3 and 0.35, it turns out to be infeasible. This is due to
constraints 7, which restricts the workload allocated to each subblock to be either
high or low. For some input data, it is impossible to satisfy these constraints.

For such a large-scale problem, the proposed MIP model (in total there are
7,392 integer variables and 24,370 constraints) is too complex to solve to
optimality in a reasonable time. Therefore, heuristic algorithms should be
developed to find a good enough solution to meet the requirement of port
operators. To evaluate the performances of the heuristics, it is necessary to find a
lower bound.

4.2.3 Finding a lower bound

One possible way to find a lower bound of this model is to solve each shift
independently. Under this assumption, constraints 4 and 5 can be removed from the
formulation. SPP is used to name the model to find a lower bound that is mentioned
above. It is shown as follows.

SPPð ÞMin w ¼
XK
k¼1

dkt (14)

Table 4 Results of model SAP for the large-scale problem

Utilization Computation time (s) Solution status Result details

0.05 30,346.80 Out of memory 104, gap=13.69% (lb=89.758)
0.10 24,640.89 Out of memory 149, gap=36.07% (lb=95.257)
0.15 26,680.84 Out of memory 188, gap=36.34% (lb=119.68)
0.20 25,721.92 Out of memory 217, gap=36.09% (lb=138.68)
0.25 64,013.97 Out of memory 221, gap=33.27% (lb=147.47)
0.30 1 Infeasible –
0.30<U<0.35 1 Infeasible –
0.35 1 Infeasible –
0.40 11,060.56 Out of memory 285, gap=20.18% (lb=227.50)
0.45 11,037.89 Out of memory 315, gap=18.86% (lb=255.58)
0.50 13,642.97 Out of memory 352, gap=18.88% (lb=285.53)
0.55 16,114.41 Out of memory 364, gap=14.00% (lb=313.04)
0.60 25,609.03 Out of memory 396, gap=13.57% (lb=342.27)
0.65 23,034.78 Out of memory 415, gap=10.80% (lb=370.17)
0.70 26,500.50 Out of memory 453, gap=11.96% (lb=398.84)
0.75 58,407.64 Out of memory 486, gap=11.71% (lb=429.09)
0.80 220,047.20 Out of memory 524, gap=12.69% (lb=457.53)
0.85 196,890.58 Out of memory 557, gap=12.79% (lb=485.74)
0.90 554,958.83 Out of memory 605, gap=14.93% (lb=514.69)
0.95 684,439.48 Out of memory 623, gap=12.82% (lb=543.12)
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Subject to: X
i2Vj

xit ¼ WX jt For all 1 � j � J (15)

X
i2Vj

yit ¼ WYjt For all 1 � j � J (16)

X
i2Bk

xit þ yitð Þ � dktCC For all 1 � k � K (17)

Hl þ Ll � Hlð Þ 1� hitð Þ � xit þ yit � Lu þ Hu � Luð Þhit For all 1 � i � I (18)

xi0t ¼ 0; yi0t ¼ 0 For all i0 2 Ni; t 2 Li; 1 � i � I (19)X
i02Ni or i0¼i

hi0t � 1 For all 1 � i � I (20)

dkt þ Lkt � Ck For all 1 � k � K (21)

xit � 0 yit � 0 For all 1 � i � I (22)

hit 2 0; 1f g For all 1 � i � I (23)

dkt Integer For all 1 � k � K (24)

Theobjective is tominimize the total number of yard cranes used in the current shift t.
All constraints ensure the same restrictions as the original model, SAP, within one shift.

The SPP model is also implemented in C++ and run on the same computer as
that for the original model, SAP. For comparison the same input data as those for
both the small-scale problem and the large-scale problems are used. The
computational results are presented in Tables 5, 6 and 7.

As shown in Table 5, model SPP for the first case small-scale problem gives
good lower bounds for most scenarios. Most of them have the same objective value
as the optimal solution. As model SPP for each shift can be solved efficiently, the
lower bound for the original model SAP can be obtained within a short time. As
shown in Table 6, for the second case small-scale problem, the lower bound for
every scenario is exactly the same as the objective value of the optimal solution.

For the large-scale SAPmodel, the optimal solution cannot be obtained. Instead,
only the best lower bound before running out of memory can be obtained. As shown
in Table 7, the lower bound obtained from model SPP is always better than the best
lower bound obtained from the model SAP before running out of memory.

5 Heuristic algorithms

The model is intractable when the size of the problem becomes large. In this
section, two heuristic algorithms that may find a feasible solution close to the
optimal solution in a reasonable time are proposed.
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5.1 The sequential method

It can be seen from the procedure that a lower bound is found wherein the single
shift model can be solved effectively. Inspired by this finding, the proposed model
can be solved one shift at a time. This is called the sequential method (SQM). The
difference between SPP and SQM is that in the sequential method, the linking
constraints of Eqs. 4 and 5 will be considered so as to ensure that the solution
is feasible. Specifically, a sequence of shifts should be picked first, and based
on this sequence, the model is solved shift by shift. Note that after solving the
model for each shift, the remaining capacity of each subblock should be
updated. Therefore, constraints 4 and 5 can be modified as follows

xit þ 2 yit � CS �
X

τ2Γ t
xi;τ þ 2 yi;τð Þ For all 1 � i � I (25)

xit þ yit � CC �
X

τ2Γ t
xi;τ þ yi;τð Þ For all 1 � i � I (26)

where Γt is the set which consists of all those shifts that come before the current
shift, t, in a given sequence. Constraints 25 and 26 ensure the capacity restriction of
each subblock in terms of storage space and yard cranes, respectively. Hence, the
SQM is the same as the procedure of SPP except that the two additional constraints,
Eqs. 25 and 26 are added into SPP. The sequential method may be effective as it has
much less decision variables and constraints.

It is also noted that the sequence of shifts chosen need not be in chronological
order as the demand repeats weekly and the only linking constraints are the space

Table 5 Comparison of results of SAP and SPP for small-scale problem (case 1)

Utilization Results of SAP Lower bounds from SPP

Computation time (s) Objective value

0.05 10 1 10
0.10 10 1 10
0.15 10 1 10
0.20 10 1 10
0.25 10 1 10
0.30 15 1 15
0.35 15 1 15
0.40 15 1 15
0.45 17.56 (lb=20, gap=12.18%) 1 20
0.50 20 1 20
0.55 21 1 20
0.60 25 1 25
0.65 25 1 25
0.70 25 1 25
0.75 30 1 30
0.80 30 1 30
0.85 35 1 35
0.90 35 1 35
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restriction and crane capacity restriction. It does not matter which shift we choose
first, as it will not violate any of these constraints. On the other hand, different
solutions are obtained from different shift orderings which implies that the
sequence is important. However as there are T! different sequences that can be

Table 7 Comparison of results of SAP and SPP for large-scale problem

Utilization Lower bounds from SAP before MR Lower bounds from SPP

Lower bound Computation time (s) Lower bound Computation time (s)

0.05 89.758 30,346.80 102 21
0.10 95.257 24,640.89 138 744
0.15 119.68 26,680.84 174 5,217
0.20 138.68 25,721.92 196 8,706
0.25 147.47 64,013.97 196 19,603
0.30 Not found 2 Not found 6,229
0.35 Not found 2 Not found 1,297
0.40 227.50 11,060.56 239 337
0.45 255.58 11,037.89 266 297
0.50 285.53 13,642.97 296 523
0.55 313.04 16,114.41 323 134
0.60 342.27 25,609.03 353 56
0.65 370.17 23,034.78 381 32
0.70 398.84 26,500.50 409 27
0.75 429.90 58,407.64 438 152
0.80 457.53 220,047.20 468 66
0.85 485.74 196,890.58 495 27
0.90 514.69 554,958.83 524 53
0.95 543.12 684,439.48 556 25

Table 6 Comparison of results of SAP and SPP for small-scale problem (case 2)

Utilization Results of SAP Lower bounds from SPP

Computation time (s) Objective value

0.05 10 1 10
0.10 10 1 10
0.15 10 1 10
0.20 11 1 11
0.25 12 1 12
0.30 13 1 13
0.35 15 1 15
0.40 17 1 17
0.45 18 1 18
0.50 21 1 21
0.55 23 1 23
0.60 23 1 23
0.65 26 1 26
0.70 28 1 28
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used, and it is time consuming to enumerate all of them, we propose to consider a
subset of sequences which is as follows: select any shift in the planning horizon as
the start shift of the sequence. Then starting from this shift, the sequence is formed
by including the shifts according to the order of time. When the end of the planning
horizon is reached, the sequence is wrapped around the beginning of the planning
horizon, and it is continued until it reaches the shift immediately before the start
shift.

5.2 The column generation method

Another heuristic algorithm is the column generation method (CGM). To be
consistent, the same notations are used as those defined in the original model, SAP.
In addition, some new notations are defined to represent the column coefficients
and new decision variables.

In the column generation model, a column represents a storage allocation in a
particular shift. The column coefficients represent the workload assigned to each
subblock, the number of yard cranes required and the high-low pattern for that
shift. They are listed below.

xitr The number of 20-ft containers allocated to subblock, i, in shift, t, for
column, r, 1 ≤ i ≤ I, 1 ≤ t ≤T

yitr The number of 40-ft containers allocated to subblock, i, in shift, t, for
column, r, 1 ≤ i ≤ I, 1 ≤ t ≤T

hitr =1 if the workload allocated (xitr+yitr) to subblock, i, in shift, t, for column, r,
is high, i.e., Hl ≤ xitr+yitr ≤Hu, 1 ≤ i ≤ I, 1 ≤ t ≤ T
=0 if the workload allocated (xitr+yitr) to subblock, i, in shift, t, for column, r,
is low, i.e., Ll ≤ xitr+yitr ≤Lu, 1 ≤ i ≤ I, 1 ≤ t ≤ T

dktr The number of yard cranes allocated to block, k, in shift, t, for column, r,
1≤k≤K, 1≤t≤T

ntr The total number of yard cranes required in shift, t, for column, r, 1≤t≤T
ptr =1, if column, r, is selected for shift t

=0, otherwise.

In the column generation model, decision variable, ptr, is used to represent
whether column, r, is selected for shift t; it should be binary in the original MIP
master problem, while it should be continuous between 0 and 1 in the relaxed
master problem.

In the master problem, the total number of crane shifts required for the whole
planning horizon under consideration should be minimized.

CGMð ÞMin w ¼
XT
t¼1

X
r

ntrptr (27)

Subject to: X
r

ptr ¼ 1 For 1 � t � T (28)
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X
t=2Li

X
r

xitr þ 2yitrð Þptr � CS For 1 � i � I (29)

X
t=2Li

X
r

xitr þ yitrð Þptr � 2 CC For 1 � i � I (30)

ptr 2 0; 1f g For 1 � t � T ; 8r (31)

Constraint 28 ensures that one and only one column can be selected in each
feasible solution for each shift. Constraint 29 and 30 ensure the capacity restriction
of subblocks in terms of storage space and yard cranes. Constraint 31 is integer
restrictions.

To solve the column generation model, the master problem should be feasible,
and all the variables should be continuous, which are necessary to obtain the dual
prices information. Therefore, in the relaxed master problem, ptr is a continuous
variable assuming a value between 0 and 1. A feasible solution to the original
problem is added as the initial columns. This can ensure the feasibility of the
relaxed master problem.

After obtaining the dual prices from the relaxed master problem, they can be
used to price out the new columns. A new column with the most negative objective
function coefficient in the master problem can be found from the pricing problem
for each shift. After adding the new columns, the master problem can be solved
again to obtain the updated dual prices.

The pricing problem is defined as follows:

Min z ¼ ntr � πt �
XI
i¼1

xitr þ 2yitrð Þσi �
XI
i¼1

xitr þ yitrð Þδi (32)

where πt, σi, and δi are dual prices for constraints 28, 29 and 30, respectively. The
objective function of the pricing problem is to find the most negative objective
function coefficient in the master problem.

Subject to: X
i2Vj

xitr ¼ WX jt For 1 � j � J (33)

X
i2Vj

yitr ¼ WYjt For 1 � j � J (34)

X
i2Bk

xitr þ yitrð Þ � dktrCC For 1 � k � K (35)
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Hl þ Ll � Hlð Þ 1� hitrð Þ � xitr þ yitr � Lu þ Hu � Luð Þhitr For 1 � i � I (36)

xi0tr ¼ 0; yi0tr ¼ 0 For 1 � i � I; i0 2 Ni; t 2 Li (37)X
i02Ni or i0¼i

hi0tr � 1 For 1 � i � I (38)

dktr þ Lkt � Ck For 1 � k � K (39)

XK
k¼1

dktr ¼ ntr (40)

xitr � 0 yitr � 0 For 1 � i � I; 1 � t � T ;8r (41)

hitr ¼ 0 or 1 For 1 � i � I; 1 � t � T ; 8r (42)

ntr � 0 Integer For 1 � t � T ; 8r (43)

All constraints ensure the same restrictions as the original model, SAP, within
one shift. Constraints 4 and 5 are removed from the formulation as only one shift is
considered at one time.

Table 8 Results of heuristic algorithms for small-scale problem (case 1)

Utilization Results of SAP Results of SQM Results of CGM

0.05 10 10 10
0.10 10 10 10
0.15 10 10 10
0.20 10 10 10
0.25 10 10 10
0.30 15 15 15
0.35 15 15 15
0.40 15 15 15
0.45 17.56 (gap=12.18%) 20 20
0.50 20 20 20
0.55 21 21 21
0.60 25 25 25
0.65 25 26 26
0.70 25 Not Found 38
0.75 30 Not Found 40
0.80 30 Not Found 40
0.85 35 Not Found 40
0.90 35 Not Found 40
>=0.95 Infeasible Infeasible Infeasible
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To accelerate the column generation procedure, the results obtained from model
SPP and SQM are treated as alternative columns. In conjunction with the initial
feasible solution, the column generation method may improve the quality of the
results obtained from the sequential method.

5.3 Implementation

The sequential method and the column generation method are both implemented in
C++ and run on the same computer as that for the original model, SAP. They use
the same input data as those for the original model, SAP. The computational results
are presented in Tables 8, 9 and 10.

Tables 8 and 9 present the results of the sequential method and the column
generation method for small-scale problems. For relatively low utilization
scenarios, the obtained feasible solutions are quite close to the optimal solutions.
For some scenarios, the objective value of the feasible solution obtained from SQM
is exactly the same as that of the optimal solution. For relatively high utilization
scenarios, the sequential method may not find any feasible solution. It is because
the sequential method is a greedy algorithm and cannot ensure feasibility.

For relatively low utilization scenarios, the column generation method can yield
near-optimal or optimal solutions as the results of model SQM are considered as
alternative columns. For relatively high utilization scenarios, there may be a big
gap between the solutions obtained and the lower bounds.

Table 10 compares the results of the sequential method and the column
generation method for large-scale problem. For most relatively low and moderate
utilization scenarios (with utilization up to 0.80 except between 0.3 and 0.35), the
sequential method can give near-optimal or exact the optimal solution. This is also
true for the column generation method that uses the results of the sequential method
as alternative columns. However, for very high utilization scenarios (with

Table 9 Results of heuristic algorithms for small-scale problem (case 2)

Utilization Results of SAP Results of SQM Results of CGM

0.05 10 10 10
0.10 10 10 10
0.15 10 10 10
0.20 11 11 11
0.25 12 12 12
0.30 13 13 13
0.35 15 15 15
0.40 17 17 17
0.45 18 18 18
0.50 21 21 21
0.55 23 23 23
0.60 23 24 24
0.65 26 Not Found 40
0.70 28 Not Found 40
>=0.75 Infeasible Infeasible Infeasible
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utilization greater than 0.8), the sequential method does not work well. Instead, the
column generation method can give a feasible solution.

In the experiments conducted, the column generation method gives a better
solution than that of the sequential method only for those problems wherein the
sequential method can get a feasible answer. This means that the column generation
model actually doesn’t improve the solution quality effectively. Even though the
relaxed master problem can be solved to optimality easily, the columns generated
cannot improve the quality of solution to the MIP version master problem. For each
single shift, there are too many optimal solutions as there are too many possible
allocations with the same number of cranes. Once the master problem finds some
linear combination of the columns that can satisfy the linking constraints, the
column generation procedure will stop right away. Consequently, the solutions for
different shifts will not be explored enough. We can use some meta-heuristics to
generate more columns for a future research topic.

6 Conclusions and future research

In this paper, we study an actual problem faced by a leading transshipment port
operator. Currently, the port operator uses consignment strategy and attempt to
assign containers to different subblocks with the objective of preventing traffic
congestion. However, they do not have any formal planning tool and its decisions
are based on intuition and past experiences. Hence, we develop a tool that is able to
provide a holistic and systematic way to address the problem which takes into

Table 10 Results of heuristic algorithms for large-scale problem

Utilization Lower bounds from SPP Results of SQM Results of CGM

0.05 102 102 102
0.10 138 138 138
0.15 174 174 174
0.20 196 196 196
0.25 196 197 197
0.30 Infeasible Infeasible Infeasible
0.35 Infeasible Infeasible Infeasible
0.40 239 239 239
0.45 266 266 266
0.50 296 296 296
0.55 323 323 323
0.60 353 353 353
0.65 381 381 381
0.70 409 409 409
0.75 438 438 438
0.80 468 472 468
0.85 495 Not Found 2,048
0.90 524 Not Found 2,048
0.95 556 Not Found 2,048
1.00 584 Not Found 2,048
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consideration the port operator’s actual requirements. The model is based on a MIP
formulation and is particularly useful for transshipment hubs where transshipment
of containers is the major activity, and the yard activity is intensive. Although the
model under some scenarios cannot be solved to optimality by the commercial
software package, we have developed two heuristics based on the MIP model to
provide good results. While the heuristic algorithms cannot guarantee an optimal
solution, we have developed a bound which is useful in quantifying the quality of
these solutions. So far this is the first paper to address the yard allocation problem
with consignment strategy and vicinity matrix for a transshipment port.

In the current model, we assume that the yard template is given, i.e., the set of
subblocks which is assigned to a certain departing vessel is known. Given this
information, we determine where we should allocate the containers in each shift. A
future research direction is to look at how to design the yard template and integrate
this to the current yard storage allocation model. Another possible future research
topic is to identify good ways to solve the MIP model efficiently, which include the
integration of meta-heuristics with the MIP model, a different decomposition
method which can exploit the structure of the MIP model.
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Advanced methods for container stacking

Abstract In this paper, we study stacking policies for containers at an automated
container terminal. It is motivated by the increasing pressure on terminal
performance put forward by the increase in the size of container ships. We
consider several variants of category stacking, where containers can be exchanged
during the loading process. The categories facilitate both stacking and online
optimization of stowage. We also consider workload variations for the stacking
cranes.

Keywords Container stacking . Marine terminals . Simulation . Container
rehandling

1 Introduction

World trade, especially the Asia–US and Asia–Europe trade, has developed rapidly
over the last decades. As a result, container traffic has increased at a high rate as
well. Ocean carriers have responded by ordering more and much larger ships. For
example, the recently built PONL Mondriaan can carry up to 8,450 TEU, whereas
Maersk/Sealand’s largest ships are considered to be equally large or larger. The
consequence of having larger container ships is that terminal activities become
more a bottleneck and its productivity has to go up. This was already
acknowledged in the FAMAS research project started in The Netherlands in
1999 (Celen et al. 1999). In this paper, we will report on explorative research
concerning container-stacking policies at an automated terminal. Before a detailed
discussion, we will first give an overview on container activities.
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2 Container operations and trends

Several reviews on container handling have been published (Meersmans and
Dekker 2001; Steenken et al. 2004; Vis and de Koster 2003). The overview below
is based on them as well as on own experience with terminal studies. Although
marine container terminals vary all over the world, they have a number of
similarities. Ocean-going ships moor at a berth where quay cranes unload and load
containers from the ship. Containers that have been unloaded are then transported
to the main stack where they are positioned through cranes or straddle carriers.
Containers can again be loaded in sea ships. Alternatively, they can be further
transported on land through truck, train, or barge. In those cases, the container is
moved from the stack to a rail or barge terminal or it is directly positioned on a
truck, which has entered the terminal. Most terminals are manually operated; a few
terminals use semiautomated equipment such as automatic guided vehicles (AGV),
to transport containers, and automatic stacking cranes (ASC), to stack containers.
These are ECT in Rotterdam, CTA in Hamburg, and Thamesport in London. In this
paper, we will focus on these automatic terminals such as the Delta Dedicated
Terminals at ECT’s Maasvlakte complex in Rotterdam.

2.1 Implications of larger ships

Large ships are more expensive to buy and to operate than small ships. As a ship’s
port time can be considered as nonproductive, a large ship’s port time is more
costly per hour than a small ship’s time. Larger ships, however, take more time to
unload and load due to the larger amount of cargo. This is a kind of paradox, which
puts a limit to the size of ships, as pointed out in (Cullinane and Khanna 2000). The
port time consists of port entry and departure time, (un)mooring time, preparation
time, and the actual loading/unloading time. Larger ships are therefore likely to
make fewer and larger calls than small ships to reduce unproductive time. For
example, the PONL Mondriaan loaded and unloaded some 4,000 TEU in one port.
This will put much more stress on the terminal logistics and stack.

2.2 Structure of stacking strategies

Several decision horizons can be identified in stacking, viz. strategic/design for the
long-term, tactical for the medium-term, operational for the short-term, and real-
time for the direct operations. Strategic decisions concern the choice of equipment,
the size of the terminal in general, and the stack in particular. Automated stacks
have less flexibility and apply more costly equipment than manually operated
stacks; hence, the design is very important. Tactical stacking decisions concern
capacity decisions on months to year. In manually operated stacks, there are more
tactical decision freedoms than in automated stacks, viz. layout of the stack,
number of cranes employed. Decisions on a tactical level include the use of
operation strategies, such as using a prestack or the application of stack
reorganizations (also called remarshalling) at those moments where no ships
need to be served. Operational decision making concerns the reservation of space
for ships, the decision to store a container at a particular location, the allocation of
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equipment to jobs, etc. Finally, the real-time phase is mainly relevant for automated
equipment, as it concerns speed control and collision avoidance of equipment.
These are mostly technical decisions taken by control systems. In this paper, we
mainly address strategic and operational decisions. The way the latter are carried
out is captured in a stacking strategy. The main objectives of a stacking strategy are

– Efficient use of storage space
– Efficient and timely transportation from quay to stack and further destination

and vice versa
– Avoidance of unproductive moves

The second objective implies, e.g., that an export container should be stacked
close to the ship with which it will sail and that its retrieval time should be short. A
stack with a maximum height of one container would be optimal for the third
objective. This would however lead to an inefficient ground use and long travel
times, so it is rarely applied in practice (apart from some stacks on wheels in the
US). Accordingly, one has to decide whether a container should be stacked on
another one or not.

A main input for a stacking strategy is the information available on a container.
This is usually its type (size, reefer, dangerous goods), modality and date/time of
departure. Unfortunately, this information may change or not be completely known
upon arrival.

There are several types of stacking strategies. In category stacking, one defines
categories and stacks containers of the same category on top of each other. In the
residence time strategy, one stacks a container on others if its departure time is
earlier than that of all containers, which will be below it.

Steenken et al. (2004) distinguish storage planning and scattered stacking. In
storage planning, space in specific areas of the stack is reserved before the ship’s
arrival. In scattered stacking, yard areas are not assigned to a ship’s arrival but to a
berthing place. The stacking position is then determined in real-time and containers
are stochastically distributed over the area. Scattered stacking results in higher yard
utilization and a significant reduction in the number of reshuffles. The category
stacking employed in this paper is a form of scattered stacking.

Some containers (e.g., reefers) require special locations because they need to be
supplied with electricity. The determination of the stack capacity is a major design
problem of a terminal, as the physical space required for the stack is often restricted
and expensive. Stacking high may be advocated, but the expected number of
reshuffles increases sharply with the stacking height. We define a reshuffle as an
unproductive move of a container, which is required to access another container
that is stored beneath it (this implies that reshuffles occur only when removing
containers from the stack).

Quite often, stacks are separated into import and export parts. Import containers
are those containers that arrive in large container ships from overseas and continue
their destination through inland transport. These arrivals are somewhat predictable.
The departure of import containers, however, is likely to be in an unpredictable
order, so they cannot be stacked that high. Export containers that arrive via land
transport may arrive somewhat randomly, but their departure is usually connected
to a ship; hence, they can be stacked in a much better way.
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2.3 Loading or stowage plan

Every ship which is loaded at a terminal has a stowage plan. According to Steenken
et al. (2004), it is made in two steps. First the shipping line makes a rough plan
based on categories, which is sent to the terminal. Later, somewhat before the
arrival of the ship, a more detailed plan is made by the terminal planner who fills
the categories in with detailed containers. The stowage plan specifies which
container will be loaded at which location in the ship. As containers vary in size
and weight, the load distribution is essential for the ship’s stability. Heavy
containers should be stored as low as possible. The stowage plan, however, also
directly influences the ease of unloading the containers and, hence, containers of
the same destination should be loaded on top of each other or on top of containers
destined for ports further away. Apart from these restrictions, there are also
containers with dangerous goods, which should be stored preferably below decks,
reefers that have special positions, etc. Advanced software is used to perform
offline optimization of the stowage plan also to avoid reshuffles as much as
possible. Although the stowage plan fixes the load order per quay crane, it does not
fix the exact order in which the containers leave the stack as the crane loading
cycles are quite stochastic and a difference in progress between cranes may occur.
Therefore, this software does not take the actual operations of the loading into
account (Steenken et al. 2004). Online stowage planning does take the details of
yard operations into account and will be employed in this paper; it is not yet in use
at container terminals.

The stacking problem can be considered to be more difficult than the stowage
planning as there can be uncertainty about which container will be needed before
another. For import containers, this uncertainty exists because trucks arrive more or
less randomly to pick up a specific container.

3 Stacking research

3.1 Literature overview

Little has been published in scientific literature on stacking problems. A main
reason may be that the practical problems are quite complex and do not easily allow
for analytical results, which are relevant for practice. Steenken et al. (2004) gave a
high-level overview of stacking both in theory and in practice.

Stacking problems can be dealt with in two ways: simplified analytical
calculations or detailed simulation studies. The first gives insight into the
relationships between the various parameters on a more abstract level. The second
can go in much more detail, with the negative side effect that it is time-consuming
and only few people really understand its ins and outs. No comprehensive stacking
theory exists today, and a good stack design not only depends on local space
conditions but also on the information characteristics of the ingoing and outgoing
flow of containers, which may vary from place to place. Examples of both
approaches are given below.

Sculli and Hui (1988) were among the first to develop yardsticks for the relation
between stacking height, utilization (or storage space needed), and reshuffles by
applying a comprehensive simulation study. Taleb-Ibrahimi et al. (1993) discussed
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this relation for export containers both at a long-term scale, as well as operationally.
They discussed dynamic strategies that store early-arriving containers in a rough
pile until a certain date, after which all containers for a ship are put in a dedicated
storage area (usually close to the berthing place of the ship). The procedures
developed calculate the storage space needed as function of the stacking height. De
Castilho and Daganzo (1993) continue these studies with the stacking of import
containers. They consider two strategies: one that keeps stacks of the same size vs
one that segregates the containers on arrival time. A slightly more detailed
discussion resulting in tables and yardsticks (looking at stacking blocks with bays
of similarly sized containers served by gantry cranes), both analytically and by
simulation, was given by Kim (1997). Kim and Kim (1998) extended these studies
by also taking the number of stacking cranes into account. They developed a simple
cost model for optimizing this number using analytical approximations for the
various performance measures.

In case the stowage plan is available some time before the sailing, the containers
in the export stack may be remarshalled. This results in an “ideal” stack and, thus,
less handling work during the loading operation of the vessel. Kim and Bae (1998)
describe a two-stage approach to minimize the number of containers to be moved
and to do so in the shortest possible traveling distance. Segregating space allocation
strategies of import containers was studied by Kim and Kim (1999). In segregation
strategies, stacking newly arrived containers on top of containers that arrived
earlier is not allowed. Spaces are thus allocated for each arriving vessel. They study
cases with constant, cyclic, and varying arrivals of vessels.

An empirical statistical analysis of the actual performance at a Taiwanese
container terminal was provided by Chen et al. (2000). The number of reshuffles
(Chen et al. use the term “shift moves”) was related to the storage density, the
volume of containers loaded, and the volume of containers discharged both for
stacking crane blocks and straddle carrier blocks.

Decision rules using weight groups for locating export containers were derived
and validated through dynamic programming by Kim et al. (2000). Weight is a
useful criterion as heavy containers are usually stored deep in a ship.

Fig. 1 Overview of ECT’s DDE terminal
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Stacking policies for automated container terminals are investigated by
Duinkerken et al. (2001), who use a detailed simulation model that not only
models the stack, but also the quay transport in an automated container terminal.
They also apply categories, but in a much more simplified way than we do in this
paper. All in all, a comprehensive analysis of how stacking should be done at an
operational level is still lacking; hence, this paper will deal with it.

3.2 Selection of research object

In this paper, we will investigate a container terminal with an automated stack as it
is envisaged that future developments will move into that direction. A picture and
logical layout of such a stack are given in Figs. 1 and 2. (Notice a slight difference
in Figs. 1 and 2 with regard to the reefer platforms; in this paper, we will follow
Fig. 2).

Figure 2 gives the general layout of the stack. On each lane, we assume one
automatic stacking crane. Transfer points are located on both the sea- and
landsides. The lanes are perpendicular to the seaside, where jumbo (very large) and
deep-sea ships, as well as short-sea/feeders, are loaded and unloaded. The

Fig. 2 Schematic overview of the stack
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containers are placed with their long side parallel to the direction of the lane. The
transfer point on the landside is used for rail, truck, and barge. All lanes have the
same length, width, and height, expressed in terms of locations. These locations
are slightly larger than one TEU to allow for some space between the containers,
which will be used to pick up and put down containers. We define a pile as zero or
more containers stacked on top of each other. We will refer to a pile with zero
containers (the ground location is empty) as an empty pile; a pile that is stacked to
the maximum stacking height is called a full pile.

Every lane is partitioned in three parts. Part 1 starts at the seaside and is used for
nonreefer containers. There are two parts adjacent to a special platform for reefer
containers on the landside. Part 2 is closest to the landside, has a length of three
locations, and is used for reefer containers only. Part 3 is located between part 1 and
the platform; it has a length of three locations and is used for reefers and reshuffles
of other containers. The reefers are stored directly adjacent to the platform between
parts 2 and 3. The platform is 10 ft deep and supplies the reefers with electricity.

Automatic guided vehicles (AGV) transport the containers from the transfer
points on the seaside to the quay cranes and vice versa. In the stacking algorithm, it
is assumed that the number of AGV is sufficient to handle all transport to and from
these transfer points in time.

The base case is a stack with 27 lanes, length 40, width 6, and height 3. This
implies that the theoretical stack capacity is 19,440 TEU. We do not make a
distinction between an export and import stack. This is partly because separate
space is already reserved for reefers and partly because it would cause inflexibility.
The difference between export and import is implicitly incorporated in the analysis,
because we will introduce different categories of containers, which are stacked
together and the import/export property is part of these categories.

3.3 Simulation program

A large simulation program was developed in the “MUST” language (Upward
Systems 1994). This is a Turbo Pascal add-on, which allows easy programming in
Turbo Pascal, while using a number of modules from the package. It was also
extensively used within ECT. It is fast, memory can be managed well, and complex
algorithms can easily be written and incorporated. Two separate programs have
been developed: a generator program and an evaluator program.

The generator program creates entry and departure times of some 175,000
containers covering a period of 15 weeks of operation. The first 3 weeks are used as
a warm-up period to fill up the stack. The output was written to a file, which was
used as input for the evaluator program where different stacking procedures could
be tested. The generation of the containers was tied to the modalities with which
they would arrive or depart. Several types of ships were considered, viz. deep-sea
ships and 8,000 TEU large jumbo ships, the latter arriving once a week with a call
size of about 3,000 containers. From a high-level modal split matrix, we developed
cyclic ship schedules, as well as detailed arrivals of all other modalities. The matrix
in Table 1 illustrates the flow between the different modes for a 3-week period.

We also developed detailed ship loading plans that specify the locations of
individual containers and detailed crane sequences for loading and unloading. The
call size of the jumbo ship was set at some 3,000 containers. We assumed a

137Advanced methods for container stacking



50:40:10% ratio between 20, 40, and 45 ft containers, which gives a TEU container
ratio of about 1.5. This means that the jumbo ship loads some 4,500 TEU. We have
also modeled other transport modalities: short-sea/feeder, rail, truck, and barge,
with the daily fluctuations in truck arrivals and a stationary pattern with
fluctuations for all the other modes. An average container residence time of
3.7 days was used, in line with information available at ECT. This implies an
average utilization of 50% of the base stack configuration. Detailed information
about the generator program and its output is available in (Voogd et al. 1999).

The evaluator program performs a deterministic simulation of an experimental
setting, based on the stochastic output of the generator program. The output of the
generator program contains exact departure times for all containers. The evaluator
program uses these times to trigger events and adds a small perturbation for use in
the stacking algorithms. These perturbations are used to model the information
uncertainty that occurs in practice. AGV routing was not modeled in the simulation
program. We took a constant time depending on the quay crane and ASC lane
where the container came from or had to go to.

This experimental setup enables accurate evaluation of various stacking
algorithms; the generator program provides the same scenario for each experiment.
Any change in the results is due to the stacking algorithm selected for the
experiment and to the minor perturbations. This way of experimental setup,
however, does not facilitate different demand scenarios, as for each scenario, a
quite detailed arrival modeling needs to be constructed, which is a difficult
scientific problem on its own.

3.4 Stacking algorithms

A stacking algorithm describes the way in which containers are handled, both in
case of moves into and out of the stack as well as in case of reshuffles. For
containers leaving the stack, we have no options unless the containers are
exchangeable with others. In that case (see also below), there might be other
containers of the same category for the same ship (or other modality), which can be
retrieved in a better way.

The main part of a stacking algorithm decides where to put a new container or a
reshuffled container. In this paper, we investigate two main concepts, viz. random
stacking and category stacking. In random stacking, there is no preference for
particular places, and it is used to evenly spread containers over the stack. In

Table 1 Modal split matrix

From To

Jumbo Deep-sea Short-sea/feeder Truck Rail Barge Total

Jumbo 0 2,332 3,630 407 965 1,405 8,739
Deep-sea 2,691 1,344 1,466 270 389 568 6,728
Short-sea/feeder 3,870 2,000 0 967 1,876 2,735 11,448
Truck 438 368 967 0 0 0 1,773
Rail 1,047 540 1,877 0 0 0 3,464
Barge 1,524 788 2,736 0 0 0 5,048
Total 9,570 7,372 10,676 1,644 3,230 4,708 37,200
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category stacking, we define categories of containers on the basis of the loading
plan. Containers in the same category may be exchanged freely. In category
stacking, one tries to exploit this property as much as possible. We supplement
these concepts with decision rules for specific cases.

A stacking algorithm is also influenced by the information available at the
moment of stacking. If the departure time of a container is known at stacking time,
then we can stack the container on top of a pile of containers with a later departure
time. This does, however, require a sufficiently large stack to allow the creation and
maintenance of these “ordered” piles.

3.4.1 Common rules

There are some basic rules for all stacking algorithms in this paper:

– Twenty-foot containers occupy one TEU location in the stack, 40-ft containers
occupy two locations, and 45-ft containers occupy three locations.

– Containers of different sizes cannot be stacked on top of each other.
– Containers have to be stacked precisely on top of each other (no overhang and a

container can be on top of just one container).
– Containers can only be stacked in the direction along the lane, not transverse.
– Reefer containers are not placed on top of normal containers, or vice versa.

Reefer containers have a special requirement: the need for a power connection.
This limits the locations available for stacking these containers. Thus, we have
implemented the same stacking algorithm for reefers in the first five experiments.
The only locations with power connections are directly adjacent to the platform.
Thus, the number of locations available to reefers is limited to twice the lane width
(once for each side of the platform). The stacking algorithm for reefers selects a
random, nonfull pile within the special reefer section of the stack. If the pile is
empty, the container is only stacked there when no more than three of these six
reefer positions are occupied. This helps to make sure that all reefer reshuffles can
be carried out. Otherwise this could cause a problem, because there are very few
possibilities for the container to be reshuffled to. If the pile is not full, the reefer can
be stacked if they are containers (reefers) of the same size. Whenever no suitable
location is found in 5,000 random choices of a lane, the aim is changed to the reefer
locations on the other side of the platform. This way of stacking probably causes
low occupancy in parts 2 and 3 of the stack.

3.4.2 Random stacking

This algorithm is used as a benchmark. Suppose a 20-ft container has to be stacked.
The program uses random search to find a pile that is not full. If the pile is empty or
if the containers in this pile are also 20 ft, an acceptable position has been found,
and the container can be stacked in this pile. If the pile consists of containers of a
different size, then the container cannot be stacked here. The program then
determines a new random position by choosing at random a new lane, row, and
position until a location is found where the container can be stacked. Forty and 45 ft
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containers are handled in the same way, but in those cases, the algorithm searches
for either an existing nonempty pile of the same size or for a sufficient number of
adjacent empty piles (two for 40-ft containers, three for 45-ft containers).

For reshuffles, the program searches all piles in the lane except for the reefer
positions on the landside of the platform. The container is reshuffled to one of the
possible piles closest to the original pile.

3.4.3 Category stacking

This algorithm is based on defining categories of containers. These are defined
through the export modality and, in case of a ship, the place of a container in it. We
assume that for certain categories (especially those defined for jumbo and deep-sea,
but not for trucks), containers are exchangeable in the loading plan or in the actual
loading, if they are either in the same or different piles. The algorithm keeps track
of a variable for every combination of lane, ship, and category. This variable
indicates how many piles of containers exist, within that lane, with only containers
of that specific ship/category combination and an empty top position. The variable
is used to facilitate the search for a good location (note that searching over 19,000
locations upon each of the 175,000 container entries is very time-consuming in the
simulation).

Now, suppose a new container has to be stacked. The first step is to determine if
there is a pile that is not full and only with containers of that same category and for
the same ship. All lanes are checked for such a pile; to spread the load evenly across
the lanes, we start the search at a random lane. Using the variable described above,
a zero indicates that no such pile exists, whereas a positive value means one or
more of those piles exist.

When the variable indicates that one or more of those piles exist, the program
starts searching, randomly within that lane, for one of those piles. When found, the
container is stacked on top of that pile. If this creates a full pile, the variable
associated with the current ship/category combination is decreased with one for
that lane.

When no such pile can be found in the current lane, i.e., the variable has value
zero for that ship/category combination in that lane, the aim shifts to the next lane.
If value of the variable equals zero for that ship/category combination for all lanes,
the container is stacked using random stacking (see description above).

3.5 Performance measures

Below we discuss appropriate performance measures of stacking policies.

3.5.1 Reshuffles and reshuffle occasions

There are two performance measures concerning the reshuffles. First of all, we
define a reshuffle occasion as one or more reshuffle operations required to retrieve
a container from the stack. We measure the reshuffle occasions as a percentage of
containers that leave the stack. The total number of reshuffles is also counted (again
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as a percentage of the total number of containers leaving the stack). These measures
are calculated separately for import and export containers. An export reshuffle is a
container (export or import) that is reshuffled because the export container needed
is under that container (so it is not necessarily an export container that is
reshuffled). It seems obvious that a situation with many reshuffles or reshuffle
occasions is undesirable, for reshuffling takes a valuable amount of time.

3.5.2 No positions available

We may not always find an empty location in the stack, especially considering the
randomness in positioning a container when it enters the stack. This will most
likely concern the 45-ft containers, because they require three adjacent empty
locations and they form a minority in comparison to the 20- and 40-ft containers.
Therefore, there will be few piles with 45-ft containers. Although the maximum
utilization is always less than 100%, we may not find an empty location for a 40- or
45-ft container. We assume that there is an emergency stack for these containers
and leave them out of consideration, as they would otherwise cause a deadlock in
the program. The aspect does imply that the real capacity is much lower than the
physical capacity, which is also a known practical fact. We may also encounter this
problem when reshuffling a container; if we cannot find an empty location in the
same lane, we move these containers to the emergency stack. A small number of
reshuffles and reshuffle occasions indicate a better performance. Larger numbers
indicate that the current stack size might be too small to be used with the current
algorithm.

3.5.3 Workload of the automatic stacking cranes

A third group of performance measures deals with the workloads of the ASC.
These workloads are determined every quarter of an hour as the proportion of time
the ASC are busy. The design of the simulation program allows ASC workloads to
exceed the capacity, i.e., workloads of more than 900 s per quarter. Since the focus
of this research is on the stacking algorithms and not on ASC scheduling, we have
chosen to allow these overloads and consider the frequency and gravity of these
occasions as one of the criteria for the performance of an algorithm. Details about
ASC technical performance can be found in (Voogd et al. 1999).

A move is handled at the same moment in time as specified in the container
files, even when the ASC is not ready at that moment. Every move starts, when not
already in the right position, with shifting the ASC from the previous position to
the position for picking up the container (transfer point for containers that enter the
stack) and ends at the position where the container is put down (transfer point for
containers that leave the stack).

To give an indication of traveling times for ASC, the times are calculated for
going from one of the transfer points to the first container position, to the twentieth
position, and to the last (fortieth) position (all positions relative to the transfer
point; see Table 2). The implementation code contains a precise model of the ASC
movements, including maximum speed and acceleration along the three axes
(longitudinal, lateral, and vertical).
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The difference between the traveling times to the twentieth position is incurred
by the reefer platform.

The workloads for all ASC are written to a file at the end of each quarter. The
maximum and average workloads are determined, given as percentages of one
quarter. An average workload of 50% therefore means that, on average, an ASC is
busy half of the time, which is 450 s per quarter. Concerning the actual scheduling
of an ASC, a workload of 80% is already pretty high. This is why the proportions of
ASC quarters, with the ASC working more than 80, 90, 100, 110, and 120% of the
time, are measured.

3.5.4 Occupation

The degree of occupation ismeasured for the ground locations. For this purpose, at the
end of each quarter, the number of ground locations in use is recorded. Themaximum
and average numbers are calculated separately for the three parts of the stack. The
overall occupation of the stack depends only on the size of the stack, as the number of
containers that will be handled during the simulation is constant for all experiments.
The occupation is 51% for the first three experiments and 47% for the other
experiments; this is low, but a consequence of the large call sizes of the jumbo ships.

For the ground locations, we expect a larger number of reshuffles when few
ground locations are occupied. The average height of the nonempty piles is higher,
which increases the possibility of reshuffles. If, on the other hand, almost all
ground locations are covered, then we expect a negative influence on the number of
reshuffles and new containers that cannot be stacked in the regular stack.

4 Features of the stacking algorithms

In this paper, we explore the use of categories for the stacking of containers. For
each experiment, we will indicate for which categories containers are considered to
be exchangeable. Here, we define exchangeable to mean that a different container
from the same category may be substituted when a container is requested for
loading. The categories defined for large containerships are typically exchange-
able. All containers to be picked up by trucks also form a category, but these
containers are not exchangeable. To facilitate the exchange operationally, we stack
containers of the same category in the same pile as much as possible, but exchange
is also possible for containers of different lanes.

The definition of the categories is based on the weight class, destination, and
type of container (the same criteria are mentioned in (Steenken et al. 2004)). Thus,
only the export modality is a feature in the definition of the categories; the import
modality is not taken into consideration. Using the data from ECT, we defined

Table 2 Typical ASC travel times

Transfer point First position (s) Twentieth position (s) Last position (s)

Seaside 9.2 45.3 79.8
Landside 9.2 47.8 79.8
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some 45 different categories for jumbo ships and 90 categories for deep-sea ships.
Containers destined for short-sea/feeder, truck, rail, and barge transport will be
allocated to a single category for each mode, even though they cannot be
exchanged in operation. As we will see in the experiments, it is not wise to stack
them in the same pile.

In addition to categorization, we have implemented several other features for
the stacking algorithm.

4.1 Preference for ground locations

We use a preference for ground locations to decrease the possibility of spoiling a
uniform pile, i.e., a pile with containers that all belong to the same category. The
implementation of this feature tries to avoid stacking a container of a different
category onto an existing uniform pile. This causes a preference for stacking on
empty piles and for stacking on multiform piles. It will reduce the number of empty
piles and may cause problems for stacking or reshuffling (45-ft) containers.

4.2 Workload control

The workload control feature associates a workload variable with each lane. We
defined the workload variable as the percentage of time of the current quarter that
the ASC for the lane was busy. When the workload variable exceeds a specified
threshold, the lane is skipped in the search for a stacking position.

4.3 Alternative algorithm for reefers

Reefer containers can be stacked in just a small part of the stack. Therefore, our
initial experiments exhibited some problems with reefer reshuffles. For every reefer
reshuffle there are only up to five possible new positions (within the same lane).
When stacking these containers at random, a lot of containers could not be
reshuffled (within the same lane). The number of reefer reshuffles however was
substantial. We therefore introduced category stacking for reefers with a
modification to avoid the creation of full piles. In this way, we aim to leave a
sufficient number of feasible empty positions for reefers.

4.4 Use empty pile closest to departure transfer point

When an empty pile has been selected for a container and multiple empty piles are
available in the same lane, the algorithm will select the pile that is closest to the
point where the container will leave the stack. The aim is to lower the ASC
workloads during ship loading. The ASC will have to travel a shorter distance to
get to the container, which decreases the time needed to unstack a container.
Furthermore, it is expected that this feature will also increase the number of
nonempty piles. This is due to the fact that we will now use the empty pile directly
adjacent to an existing nonempty pile, leaving no space (TEU position) open. The
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proportion of “unusable” empty piles will then be lower. Using more ground
locations is also thought to decrease the number of reshuffles. We will explain this
feature with the following example.

Consider the case where we have to stack four 45-ft containers with a maximum
stack height of three containers. Furthermore, suppose that all ground locations are
occupied except for the last six TEU positions in front of a transfer point and that
all piles of 45-ft containers are full. In this case, random stacking might put the first
container on the second, third, and fourth TEU location instead of the first, second,
and third TEU location. The second and third containers will then be stacked on top
of the first container. Even with three TEU ground locations available, the fourth
container cannot be stacked in this lane: the locations that are available are not
adjacent. With the new rule, the first container will be stacked upon the first three
empty TEU locations, leaving the other locations open for one (or more) of the
other three containers.

At first, we will use this feature for all modalities. A variation of this feature is
designed to reduce the ASC travel time (and thus the workload) when unloading
jumbo or deep-sea ships: containers destined for the landside are not subjected to
this rule. When there are no jumbo or deep-sea ships present at the quays, the ASC
workloads are lower and the additional travel time does not pose a problem. This
feature will probably have a negative effect on the average distance to travel for
export containers (because the import containers can use positions close to the
seaside). It will also decrease the effect described above concerning the use of
ground locations.

4.5 Combine parts 1 and 3 of the stack

Initial experiments showed a low use of the locations in the third part of the stack.
We therefore decided to use this part of the stack for both regular containers and
reefers (for reshuffles and new containers). The reefers can still be stacked onto the
last (one, two, or three) piles of the second part of the stack. We expect this feature
to generate a better use of ground locations and thus reduce the number of
reshuffles. An obvious disadvantage of this feature is that the number of available
positions for reefers is reduced.

4.6 Exchanging containers from different lanes

Categories can also be used to select a container from a different lane in the loading
operation. We can use this to avoid overloading an ASC. This feature is therefore
triggered if the ASC in a selected lane is too busy. The algorithm scans all lanes of
the stack for a lane that contains a container of the required category and an ASC
that has a workload below the predefined limit.

4.7 Using the expected departure (residence) time of the containers

The expected departure time can be used to store containers that will leave shortly
on top of containers that will stay in the stack for a longer period. This feature is used
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whenever a container has to be stacked and there is no nonfull pile of that category.
The container will then be stacked on top of a container for which the expected
departure time is later than the expected departure time of the incoming container.

The expected departure time for jumbo and deep-sea containers is approximated
by the middle of the time interval during which the ship lies alongside the quay. For
the other modalities, the average dwell time of a container is approximately half a
week: the expected departure time is therefore approximated by adding 3.5 days to
the time of arrival. Note that this option does not use detailed information. It can also
be applied if no information on the departure time is available.

4.8 Choosing the ASC that has the lowest workload

The lowest ASC workload feature can be used for both incoming and outgoing
containers. For incoming containers, creating uniform piles takes precedence over
the lowest workload. Thus, a container will be stacked on top of a uniform pile of
the same category even if the ASC for that lane is very busy. If there are uniform
piles in multiple lanes, then the lane with the lowest ASC workload will be
selected. For outgoing containers, we select the lane with the lowest ASC workload
from lanes in which containers from the target category are stored.

5 Experiments

The following data applies to all experiments. The stack has 27 lanes for
experiments A0 to C and 29 lanes for all other experiments. A lane is 40 TEU long,
6 TEU wide, and the maximum stacking height is three containers. Categories and
exchanges are possible for jumbo, deep-sea, as well as for rail and barge; temporary
substacks are used for rail and barge to loosen the loading order restrictions when
leaving the main stack. Category stacking is applied for all modalities, except
where stated differently. The experiments are listed in Appendix A and the
numerical results from the experiments are in Appendix B. We will now describe
the experiments and analyze the results.

5.1 Base Case

A null experiment (A0) uses random stacking without the possibility to exchange
containers of the same category for the same (jumbo or deep-sea) ship. The number
of reshuffles in case of random stacking is high (89%). Although it is hard to
validate such stacking programs, the number is not considered unrealistic by
terminal operations people.

Experiment A considers category stacking for all modalities without any of the
additional features. This yields much better results than random stacking: the
percentage of reshuffles drops from 89 to 46%.

In experiment B, short-sea/feeder and truck containers are not stacked as
categories, because these containers are not exchangeable. The percentage of
reshuffles for these containers is reduced significantly (short-sea/feeder from 112 to
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82%; truck from 104 to 84%), while the percentage of reshuffles for all other
modalities has increased. The average use of ground locations rises from 65 to 70%.

5.2 Preference for ground positions

Experiment C extends experiment B with a preference for ground locations as
discussed in “Features of the stacking algorithms” section. This has a pretty large
effect, mainly on the number of reshuffles and reshuffle occasions. On aggregate,
those percentages are approximately half of the percentages when using no
preference. The percentages of reshuffles are shown in Fig. 3.

The workloads of the ASC are also influenced by this preference, although the
effects are moderate.

As expected, the number of empty piles drops especially in part 1 of the stack.
This causes an increase in the number of containers that cannot be stacked. The
probability that containers cannot be stacked or cannot be reshuffled is higher when
there are fewer empty piles; on the other hand, the percentages of reshuffles and
reshuffle occasions are lower.

In this case, almost one out of every 1,000 containers cannot be stacked, which
is a very high proportion. One way to reduce this number is to increase the size of
the stack. Therefore, we added two lanes (29 instead of 27) to create experiment D
(this configuration of the stack will be used for all other experiments). As can be
expected, this decreases the number of reshuffles, as well as the average workloads
and the proportion of containers that cannot be stacked. Finally, it also reduces the
use of ground locations a little.

5.3 Workload control

In experiment E, we add a workload control variable for each lane. A container is
not stacked into a certain lane when the workload of the ASC in the current quarter
exceeds 80%. This workload control variable is only used when (un)stacking
regular (nonreefer) containers.

Theworkload control variables do not affect the reshuffles. The aim of this feature
is to reduce the number of busy or very busy ASC quarters. The most significant
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impact can be observed in the percentage ofASCquarterswith aworkload over 100%
during jumbo operations: this percentage drops from 11.8 to 8.3%.

5.4 Improved reefer stacking

The next experiment (F) adds the modified category stacking policy for reefers to
the setup of experiment E. Experiment G adds workload control for reefer
containers; the limit is set to 80%.

This seems to have a few positive effects. The overall number of reshuffles and
reshuffle occasions are reduced (from 19.0 to 16.0% and from 13.4 to 11.4%,
respectively). There are no more reshuffles for reefer containers (this cannot be
deduced directly from the table). In addition, it is now possible to find a position for
all new containers and reshuffles. Finally, the use of ground locations in the third
part is much lower when using category stacking for reefer containers.

Adding a workload control variable for reefers (experiment G) has a (small)
positive effect (it reduces the proportions of busy ASC quarters a little).

5.5 Use ground position closest to transfer point for unstacking

In experiment H, whenever a container is to be stacked on an empty pile in a lane,
we select the pile that is closest to the transfer point where the container will leave
the stack. The result is an increase of approximately 2% in the use of ground
locations in part 1 of the stack (both average and maximum). The overall
percentage of reshuffle occasions decreases from 11.4 to 10.4%; the percentage of
reshuffles drops from 16.2 to 14.8%. The percentage of quarters with a high
workload is lower during jumbo handling (7.8 vs 6.3% quarters with a workload
over 100%). This is also true during deep-sea handling and overall.

5.6 Combine parts 1 and 3 of the stack

Experiment I was motivated by an observed low use of ground locations in the third
part of the stack. Thus, experiment I extends experiment H with the option to stack
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regular containers in the third part of the stack. The average and maximum use of
ground locations increase and lead to a clear reduction in reshuffles and reshuffle
occasions (Fig. 4). Compared to experiment H, there are a significant number of
reshuffles for which no position could be found (15 per 100,000 containers). The
maximum workload for jumbo containers rises from 220 to 279%.

The total percentage of reshuffles decreased from 14.8 to 9.7. The total
percentage of reshuffle occasions dropped from 10.4 to 6.9. The percentage of busy
ASC quarters has decreased from 6.3 to 5.6 for jumbo containers.

5.7 Exchanging containers from different lanes

To study the influence of this feature, we have defined experiments J and K.

J Experiment I modified to exclude import containers from the closest transfer
point rule.

K Experiment J, with the added possibility of exchanges between different lanes.

The exchange candidate has to be on top of its pile. The algorithm looks for
exchange candidates whenever the workload of the ASC for the original container
exceeds 80%.

Experiment J does not yield favorable results in comparison to experiment I: the
percentages of reshuffles and reshuffle occasions are higher. Adding the exchange
from different lanes feature in experiment K causes the percentage of reshuffles to
drop from 9.9 to 9.5. The primary purpose of adding this feature was to obtain
lower proportions of ASC quarters with high workloads. Figure 5 below illustrates
the overall percentages of high ASC workloads: the percentage of busy quarters is
reduced significantly. We have explored several additional ways to implement this
feature but the results are similar. From these experiments, we conclude that adding
the possibility of exchanging containers from the same category within different
lanes has a positive effect. It reduces the number of reshuffles and reshuffle
occasions, as well as the proportion of high ASC workloads.

Fig. 5 The effect of using ASC workload on the percentage of busy quarters
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5.8 Using the expected departure time of the containers

In practice, it is often difficult to obtain a reliable indication of the departure time.
Therefore, we use the expected departure time as a relative measure to create an
ordering for the containers. For this feature, we have to define a boundary value
that controls whether a container can be stacked on top of another one. When we
make this restriction too loose, a lot of containers will be stacked on a container that
will leave earlier, which causes a reshuffle. If, on the other hand, the restriction is
too tight, we will make less use of the opportunity to use the expected departure
times of the containers.

To get some insight into the effects of adding a rule based on the expected
departure times of the containers, we can compare the results of the experiments K,
L, and M. Experiment K makes no use of this rule; experiments L and M extend
experiment K with the expected departure time feature. For experiment L, the value
of the boundary is 3 h after the expected departure time of the container already in
the stack. Experiment M sets the boundary to the expected departure time of the
container that is currently on top of the selected pile.

This feature was designed to lower the number of reshuffles. The percentages of
reshuffles and reshuffle occasions are lowest for experiment L (8.8 and 6.2). For
experiment M, these percentages (9.6 and 7.0) are even higher than for experiment
L (9.5 and 6.8). The restriction on the expected departure times may be too tight for
experiment M. The differences between these experiments concerning the high
ASC workloads are small. Furthermore, using the departure times of the containers
leads to a somewhat higher use of ground locations.

5.9 Choosing the ASC that has the lowest workload

We have designed two experiments to determine the effects of starting in the lane
for which the ASC has the lowest workload when stacking or unstacking.
Experiment K is used for comparison.

N Algorithm K with the ASC workload feature implemented for incoming
containers for which multiple uniform piles in different lanes have been found.

O Same as experiment N, with lowest ASC workload feature implemented for
outgoing, regular (non-reefer) containers.

The percentages of reshuffles and reshuffle occasions increase when adding this
feature. However, the feature was designed to improve the workloads, so Fig. 5
shows the percentages of high workloads for these experiments.

As we can see, the percentage of high workloads has indeed decreased by
starting in the lane where the ASC has the lowest workload. We have also
experimented with the lowest ASC workload rule for reefer containers and a lower
maximum stacking height (two) for truck containers as an extension of experiment O:
these experiments yielded no additional benefits.
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6 Comparison of all scenarios

In this section, we will focus on the overall results rather than compare individual
experiments. Again, we will visualize some of the results in graphs.

First of all, Fig. 6 indicates that the percentage of reshuffles can be significantly
reduced. For our benchmark, this was 46.1%; for experiment L, it is just 8.8%. That
is less than 20% of the initial percentage. The graph also shows that a number of
other experiments have a similar percentage of reshuffles.

Maybe, the most important performance measure is the proportion of busy ASC
quarters. Figure 7 shows for all experiments the percentage of ASC quarters with
the ASC working more than possible. We have decreased this value a lot. In the
benchmark case, this is equal to 3.8%. The best result is obtained using experiment
N (0.3%), but there are several experiments with similar performance (in terms of
this percentage).

For some experiments, there are (relative to the numbers for other experiments) a
lot of containers that cannot be stacked (either new containers or reshuffles; see
Fig. 8). This is a highly undesirable effect. Note that, because we just took these
containers out of the stack or we did not stack them at all, this also positively biases
the results.
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7 Conclusions

In this paper, we have investigated a number of policies for stacking containers in a
yard by means of simulation. The following conclusions can be derived from the
experiments.

Loading and unloading operations for jumbo containers ships creates
workloads that exceed the capacity of the set of ASC (27 to 29 in total). The
average workload over time is well below 100%, but the workload during the
handling of a jumbo ship is very high with many short-term bottlenecks. This
means that the stack configuration is not able to follow the quay crane production.

Category stacking yields much better results than random stacking. Allowing
exchanges for containers for the same category jumbo or deep-sea ship further
improves the results. The number of actual reshuffles and the number of reshuffle
occasions can be reduced by adding a preference for ground locations. This also
reduces the ASC workloads. However, there is the possibility of creating a higher
proportion of nonstackable containers due to the reduced number of empty piles;
this feature requires careful implementation.

Treating containers for short-sea/feeder, rail, truck and barge as categories to be
stacked together seems to have no large effect on the whole. Although it reduces
the number of reshuffle occasions for jumbo and deep-sea, this number increases
for the other modalities. Using fewer piles, on average, for the same containers
leads to a higher number of reshuffles. The effect of stacking piles with only truck
containers up to a height of two is negligible.

The peaks in ASC workloads can be reduced by adding a workload control
variable, as well as stacking on piles close to the transfer point where the containers
are to leave the stack. Finally, the possibility of exchanging containers of the same
category within different lanes decreases the proportion of high workloads as well.

The definition of the categories is based on parameters used in stowage
planning. This allows online optimization in which we can avoid suboptimal yard
operations that might be caused by a predefined (offline) stowage plan.

Overall, we conclude that detailed simulation experiments of the stacking
operations can drastically improve the stacking performance and is thus essential
for constructing automated container terminals.
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1 Appendix A

1.1 Experiments

A0 This is a reference experiment that uses random stacking without exchanges.
A This experiment considers category stacking for all modalities.
B Category stacking without exchangeability for short-sea/feeder and truck

containers.
C Same as the previous experiment, with an added preference for ground

locations in the random part of the algorithm.
D Experiment C with 29 lanes instead of 27.
E Experiment D, with the workload control variable set to 80% rather than 88.9%.
F Experiment E with alternative reefer stacking policy (no workload control

variable for reefer containers though).
G Experiment F, with reefer containers also subject to the workload control

feature with a limit of 80%.
H Experiment G with the closest transfer point feature. This feature selects an

empty pile closest to the transfer point at which the container will leave the stack.
I This setup is based on experiment H:We allow the stacking of regular containers

in the third part of the stack (this part is usually reserved for reefer containers).
J In this modification of experiment I, we exclude import containers from the

closest transfer point rule.
K Experiment I, with the option of exchanges between different lanes.

Exchanges are considered whenever the ASC workload of the selected lane
exceeds 80%. Feasible exchange locations are limited to the top containers of
each pile and are located using a random search approach.

L Same as experiment K, with the expected departure time rule: a container can
only be stacked on top of other containers if the new container has an
expected departure time less than 3 h after the expected departure time of the
current topmost container in the pile.

M Experiment L, but the expected departure time of the new container must be
before or equal to the expected departure time of the topmost container of the
pile.

N Experiment K with the ASC workload feature for incoming containers, for
which multiple uniform piles in different lanes have been located.

O Experiment N, with the addition of the ASC workload feature for outgoing,
regular (i.e., nonreefer) containers.

Appendix A

Experiments
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1 Appendix B

1.1 Numerical results of the experiments

Experiment A0 A B C D E F G H I J k L M N O
Reshuffle occasions

Total 60.9 31.0 31.0 16.1 13.3 13.4 11.4 11.4 10.4 6.9 7.1 6.8 6.2 7.0 6.8 6.9
Jumbo 67.8 12.4 18.5 10.2 8.5 8.3 4.3 4.1 3.6 2.1 2.3 2.1 1.8 2.4 2.0 1.4
Deep-sea 55.9 12.3 19.5 11.4 9.4 9.5 5.0 4.8 4.1 2.2 2.5 2.2 2.4 2.8 2.3 2.3
Short-sea/feeder 62.8 71.5 58.6 31.5 26.1 26.6 26.3 26.6 24.5 17.3 17.5 17.2 15.2 16.9 17.1 17.9
Export 55.9 35.1 34.2 18.7 15.5 15.6 12.9 12.9 11.8 8.0 8.2 7.9 7.1 8.1 7.9 8.0
Truck – 68.0 58.4 32.3 26.7 26.4 26.5 26.6 26.0 16.2 16.3 14.9 12.5 14.9 16.1 16.1
Rail – 9.5 14.7 3.8 3.0 3.2 2.7 3.1 2.5 1.3 1.2 1.1 1.5 1.5 1.3 1.0
Barge – 8.8 13.8 3.9 2.8 2.9 2.8 2.9 2.4 1.4 1.4 1.1 1.5 1.6 1.2 1.3
Import – 19.2 21.8 8.7 7.0 7.1 6.9 7.0 6.5 3.9 3.9 3.5 3.4 3.8 3.8 3.7
Reshuffles performed

Total 89.3 46.1 41.8 23.0 19.0 19.0 16.0 16.2 14.8 9.7 9.9 9.5 8.8 9.6 9.5 9.8
Jumbo 99.7 15.7 23.5 13.4 11.3 10.8 5.5 5.3 4.7 2.8 3.0 2.8 2.0 2.8 2.6 1.8
Deep-sea 81.8 16.4 25.4 15.3 13.0 13.1 6.1 5.8 5.0 2.7 3.0 2.6 2.8 3.1 2.7 2.7
Short-sea/feeder 92.1 112.2 82.2 47.0 38.5 39.0 38.3 39.3 36.0 24.7 25.1 24.7 23.0 24.1 24.5 26.1
Export 81.9 52.9 46.6 26.8 22.2 22.3 18.3 18.5 16.8 11.2 11.5 11.2 10.3 11.1 11.0 11.4
Truck – 103.5 83.9 49.0 40.2 39.2 39.4 39.5 39.1 24.0 24.3 22.6 20.1 22.7 24.2 24.8
Rail – 10.8 17.0 4.3 3.4 3.7 3.0 3.5 2.8 1.4 1.4 1.2 1.6 1.6 1.4 1.1
Barge – 9.8 15.9 4.5 3.2 3.4 3.2 3.3 2.7 1.5 5.4 1.2 1.6 1.6 1.4 1.3
Import – 26.2 27.9 12.1 9.6 9.6 9.4 9.6 9.0 5.3 9.9 4.9 4.8 5.2 5.3 5.3
No position (per 100,000)

For new container 0 0 0 96 1 3 0 1 0 0 0 0 0 0 0 –

For reshuffle 74 40 28 42 25 25 0 0 0 15 23 18 24 36 18 –

Ground locations: maximum

Overall 84.5 75.3 79.9 91.1 89.2 89.1 88.7 87.8 89.4 95.2 94.7 95.7 96.4 96.5 95.1 95.2
Part 1 of the stack 89.6 80.8 86.3 98.7 97.7 97.5 97.5 97.4 99.4 98.4 97.8 98.9 99.6 99.8 98.4 98.3
Part 2 of the stack 50.6 50.2 51.4 48.6 48.1 46.7 58.2 58.2 58.2 58.2 58.2 58.2 57.9 57.9 58.2 58.2
Part 3 of the stack 68.9 50.4 50.6 53.5 42.2 40.2 22.4 22.2 14.4 – – – – – – –

Ground locations: average

Overall 77.4 64.7 70.3 81.3 79.0 79.0 78.3 78.2 79.4 83.9 83.5 84.0 85.1 85.3 83.9 84.3
Part 1 of the stack 83.5 69.6 76.5 89.0 87.5 87.4 87.4 87.4 89.3 87.6 87.1 87.7 88.9 89.0 87.5 88.0
Part 2 of the stack 38.7 38.9 38.6 39.2 37.5 38.1 38.7 38.7 38.7 38.7 38.7 38.6 38.7 38.6 38.6 38.7
Part 3 of the stack 47.1 36.0 31.4 36.5 24.5 24.8 13.6 13.3 8.8 – – – – – – –

Workload ASC: overall

Maximum (%) 301.9 312.6 289.4 270.4 302.5 260.8 246.5 287.8 220.2 278.9 258.9 259.1 193.6 238.1 214.0 367.3
Average (%) 31.2 27.0 26.8 25.4 23.3 23.4 23.3 23.3 22.5 22.3 22.3 22.3 22.3 22.4 22.1 22.0
Percentage >80% 10.3 7.3 7.1 6.1 5.1 4.7 4.6 4.6 3.9 3.7 3.7 3.1 3.1 3.2 2.6 2.0
Percentage >90% 7.7 5.3 5.1 4.4 3.5 2.8 2.7 2.7 2.2 2.1 2.1 1.2 1.2 1.3 1.0 0.9
Percentage >100% 5.7 3.8 3.6 3.1 2.4 1.7 1.6 1.6 1.2 1.1 1.1 0.5 0.5 0.5 0.3 0.4
Percentage >110% 4.1 2.7 2.5 2.2 1.6 1.0 1.0 1.0 0.7 0.6 0.6 0.2 0.2 0.2 0.1 0.2
Percentage >120% 3.0 1.9 1.7 1.5 1.1 0.6 0.6 0.6 0.4 0.3 0.4 0.1 0.1 0.1 0.1 0.1
Workload ASC: jumbo

Maximum (%) – 312.6 289.4 270.4 302.5 260.8 246.5 225.3 220.2 278.9 258.9 259.1 193.6 218.0 214.0 367.3
Average (%) – 59.5 60.4 57.6 53.2 53.2 53.0 52.9 50.0 49.6 49.8 49.5 49.4 49.8 49.4 49.0
Percentage >80% – 28.4 28.6 25.9 22.2 21.3 21.1 20.7 17.7 16.8 17.3 14.5 14.6 15.3 12.7 9.5
Percentage >90% – 22.3 22.0 19.8 16.5 13.3 13.1 12.8 10.5 9.8 10.4 5.9 6.0 6.3 4.8 4.4
Percentage >100% – 17.1 16.5 14.7 11.8 8.3 8.0 7.8 6.3 5.6 5.9 2.3 2.3 2.6 1.7 1.9

Appendix B

Numerical results of the experiments

153Advanced methods for container stacking



Percentage >110% – 13.0 12.3 10.8 8.4 5.2 5.0 5.0 3.7 3.2 3.3 1.0 1.0 1.1 0.7 0.9
Percentage >120% – 9.6 8.8 7.8 5.9 3.1 3.1 3.0 2.1 1.8 1.9 0.5 0.4 0.5 0.3 0.5
Workload ASC: deep-sea

Maximum (%) – 266.3 242.7 239.8 226.5 190.9 199.0 287.8 206.5 204.3 197.9 176.6 159.6 238.1 213.4 205.8
Average (%) – 39.7 40.1 38.3 35.2 35.3 35.1 35.0 33.2 33.0 33.1 33.0 33.1 33.2 32.9 32.5
Percentage >80% – 11.8 11.8 10.1 8.1 7.3 7.0 7.0 5.7 5.4 5.4 4.2 4.4 4.3 3.3 2.8
Percentage >90% – 8.0 8.2 6.8 5.1 4.0 4.0 4.0 2.9 2.9 2.8 1.7 1.8 1.6 1.2 1.2
Percentage >100% – 5.4 5.4 4.4 3.2 2.2 2.2 2.2 1.6 1.5 1.4 0.6 0.7 0.6 0.4 0.5
Percentage >110% – 3.5 3.5 2.9 2.0 1.3 1.2 1.2 0.8 0.7 0.7 0.2 0.3 0.3 0.2 0.2
Percentage >120% – 2.3 2.2 1.8 1.1 0.7 0.7 0.7 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1
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Martin Grunow . Hans-Otto Günther . Matthias Lehmann

Strategies for dispatching AGVs at automated
seaport container terminals

Abstract Control of logistics operations at container terminals is an extremely
complex task, especially if automated guided vehicles (AGVs) are employed. In
AGV dispatching, the stochastic nature of the handling systems must be taken into
account. For instance, handling times of quay and stacking cranes as well as release
times of transportation orders are not exactly known in advance. We present a
simulation study of AGV dispatching strategies in a seaport container terminal,
where AGVs can be used in single or dual-carrier mode. The latter allows
transporting two small-sized (20 ft) or one large-sized (40 ft) container at a time,
while in single-mode only one container is loaded onto the AGV irrespective of the
size of the container. In our investigation, a typical on-line dispatching strategy
adopted from flexible manufacturing systems is compared with a more
sophisticated, pattern-based off-line heuristic. The performance of the dispatching
strategies is evaluated using a scalable simulation model. The design of the
experimental study reflects conditions which are typical of a real automated
terminal environment. Major experimental factors are the size of the terminal and
the degree of stochastic variations. Results of the simulation study reveal that the
pattern-based off-line heuristic proposed by the authors clearly outperforms its
on-line counterpart. For the most realistic scenario investigated, a deviation from a
lower bound of less than 5% is achieved when the dual-load capability of the AGVs
is utilized.
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1 Introduction

Driven by the trend towards globalization of the economy, world trade volumes
have increased dramatically during the last decade. Today, maritime cargo
transportation has become the predominant transportation mode in international
trade. For instance, 78.7% of the USA foreign trade in 2001 was accomplished by
maritime cargo transportation (cf. BTS 2004). At the same time, the number of
container terminals worldwide increased considerably. Their major function is to
serve as multi-modal interfaces between sea and land transport.

To cope with increased transportation volumes and to benefit from the
economies of scale, ship owners have constantly increased the capacity of their
deep-sea container vessels, recently culminating in the 10,000 TEU (20-ft
equivalent units) container ship generation. Operators of seaport container
terminals have primarily responded to this development by increasing their
terminals in size and making use of more efficient transportation and handling
equipment. There are, however, a great number of existing terminals which have
reached their limits for further expansion. Hence, new automated container
terminals are constructed worldwide. These terminals are better suited to serve the
huge, modern deep-sea container vessels and to employ improved logistics
equipment.

One direction for improving the overall productivity of a container terminal and
to reduce the berthing times of vessels is to enhance the degree of automation of the
handling and transportation equipment. Hence, manually operated cranes have
been replaced by automated ones and AGVs are used instead of manually driven
carts. An example of the AGV application in the Container Terminal Altenwerder
(CTA) in Hamburg, Germany is given in Fig. 1. Nevertheless, for transportation
between different terminals at one location, as is the case in the city of Busan
(Korea), conventional trucks are still the primary mode of transportation (cf. Koo
et al. 2004a). For intra-terminal operation, dual-load AGVs represent a recent
development in transportation technology. Such vehicles offer the advantage of
being able to transport two 20-ft containers or one 40-ft container at a time.
Another recent development is represented by so-called automated lifting vehicles
(ALVs) which, in contrast to AGVs, are capable of lifting a container from the
ground by itself (cf. Vis and Harika 2004; Yang et al. 2004). The only container

Fig. 1 AGV employed at the Container Terminal Altenwerder, Hamburg, Germany
(source: http://www.hhla.de/de/Geschaeftsfelder/index.jsp, visited on August 22, 2005)
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terminal employing ALV systems so far is the port of Brisbane, where they have
been introduced for commercial use in December 2005.

As a container terminal represents a complex system with various interrelated
components, computerized logistics control systems have recently gained
considerably higher attention. The use of automated equipment in turn requires
much more sophisticated control strategies to exploit the capabilities of advanced
automated equipment (cf. Günther and Kim 2004; Steenken et al. 2004). For
instance, in automated container terminals, dual-load AGVs are still operated in
single-carrier mode, mainly because adequate dispatching strategies, which allow
for the efficient use of their enhanced transportation capacity, are missing. The
dispatching problem for dual-load carriers is obviously considerably more complex
than for single-load carriers.

In the academic literature, the AGV dispatching problem arising in seaport
container terminals has been widely neglected. Two exceptions are the papers by
Bae and Kim (2000) and Koo et al. (2004b). Their investigations, however,
consider selected issues related to dispatching of single-load carriers. Another
noticeable exception is the paper by Kim and Bae (2004). They develop an efficient
look-ahead heuristic for dispatching single-load AGVs. In a numerical investigation,
it is shown that their heuristic outperforms conventional dispatching rules. A
problem similar to AGV dispatching is the yard trailer routing problem investigated
by Nishimura et al. (2005). They consider man-driven multi-load trailers and
develop a genetic-algorithm-based dispatching approach. In a simulation study, it is
shown that a dynamic routing strategy, i.e., one which does not assign a vehicle to a
specific crane, is superior to a static routing strategy with dedicated crane-vehicle
assignments. However, because of the excessive computational requirements, their
approach is barely applicable in a real-time dispatching strategy. Finally, Grunow
et al. (2004) developed a heuristic for dispatching dual-load AGVs. For two
idealized seaport container terminal configurations, they compared their approach
against a benchmark solution obtained from an MILP model application.

The main contributions of this paper are:

– Contrary to most papers in the academic literature, the multi-load capability of
the AGVs is taken into account.

– The approach developed in Grunow et al. (2004) is extended. In an off-line
approach, we now assign all transportation orders in the planning horizon to
AGVs. This bears the following benefits:

– The new conception is less myopic.
– During the assignment of transportation orders to AGVs, availability

restrictions do not have to be taken into account.
– Vehicle-initiated dispatching is no longer required. Hence, the corresponding

triggering events do not have to be monitored.
– The latter two improvements lead to a significant reduction of the

information system complexity.

– A comprehensive simulation model has been developed. Contrary to previous
studies on vehicle dispatching, this model reflects conditions which are typical
of a real automated terminal environment. The simulation model is used to
compare the off-line to the on-line approaches as they are applied in the harbour
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practice and to analyze the suitability of the approaches with regard to real time
requirements. Furthermore, a lower bound was derived as an additional
performance measure.

A specific issue of considerable importance in decentralized control of complex
logistics systems is the handling of deadlock situations. Various strategies can be
pursued to handle deadlocks arising between different resources in the terminal
configuration. Related procedures for application in real-time control of AGV
systems at automated container terminals are presented in a companion paper (see
Lehmann et al. 2006, for a review).

This paper is organized as follows. In Section 2, the AGV dispatching problem
is explained in greater detail. Next, on-line and off-line dispatching modes are
discussed in Section 3. This is followed by the detailed presentation of related
dispatching strategies (see Section 4). Results of a simulation study are presented in
Section 5. Finally, conclusions are drawn and directions of future research are
highlighted.

2 AGV dispatching

A typical seaport container terminal is divided into a berthing, an AGV, and a
storage area. Figure 2 illustrates the layout of one of the latest highly automated
seaport container terminals. The berthing area is equipped with quay cranes for the
loading and unloading of vessels. When a vessel arrives at the port, it has already
been determined at which position the vessel is berthed and which quay cranes will
be working on the vessel (cf. Guan and Cheung 2004). The unloading sequence of
the containers is equally known in advance for each vessel (cf. Kim et al. 2004).
Thus, detailed schedules for the quay cranes can be derived from the given
unloading sequence (cf. Park and Kim 2003). At the same time, the final
destination in the storage area is determined for each container. The storage area is
divided into blocks each of which is serviced by one or more stacking cranes. After
unloading a container, the stacking cranes at the affected block are scheduled to
meet the estimated arrival time of the container. The transport of the containers
from the berthing area to the storage yard is realized by dual-load AGVs (for a
general framework of scheduling operations in container terminals, see Hartmann
2004a).

In the container terminal considered, AGVs are operated in single-load carrier
mode but shall be used as dual-load carriers in the future. The particular difficulty
of AGV dispatching in a highly automated container terminal is that AGV pick-up
and drop-off times for each container have to coincide with the schedules of the
quay and stacking cranes to avoid idle times of this equipment and to guarantee
short berthing of the vessels. The operations necessary to load a vessel are similar.

AGV dispatching usually consists of three sub-problems, namely, assigning
AGVs to transportation orders, routing the AGVs, and traffic control. Algorithms
for routing and traffic control are generally already included in the control software
provided by the AGV manufacturer. Thus, only the assignment problem is
investigated in this paper. In contrast to applications of AGVs in manufacturing
systems, rigid pick-up and drop-off time constraints have to be considered, which
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significantly increase the problem complexity. In addition, the lack of buffers
requires an exact synchronization of the operations.

In the case of single-load carriers (cf. Bish et al. 2005), AGV dispatching can be
reduced to an m:n assignment problem with the objective of minimizing the costs
associated with not meeting target times imposed by the quay cranes’ schedule.
(Note that quay crane waiting times directly affect the vessels’ turnover time and,
thus, the productivity of the container terminal.) The corresponding linear
optimization model can be solved rather efficiently due to its pure binary nature.
However, in the case of multi-load carriers, the assignment problem is significantly
more complex. In addition to the basic order-vehicle assignment, the various
pick-up and drop-off operations have to be sequenced for each AGV.

Throughout the paper, we make the following basic assumptions:

– Each AGV is capable of carrying one 40-ft container or two 20-ft containers at a
time.

– All AGVs in the fleet are identical in their function, loading capacity, speed, etc.
– AGVs are not pooled, i.e., they operate independently from each other and are

not dedicated to a specific quay or stacking crane.
– AGV travel times are assumed to be deterministic. In particular, effects of

congestion among AGVs on the guide path are neglected.
– Transportation of special-purpose containers, e.g., reefer or hazardous goods

containers, is not considered.

3 On-line and off-line dispatching mode

Scheduling in dynamic application environments has been an active research area
in recent years. Much work has been carried out to compare on-line and off-line
scheduling strategies and to find out which of them is more suitable. However, a
general answer to this question will always depend on the specific application
environment. While for master production planning in manufacturing systems a

Fig. 2 Layout of the Container Terminal Altenwerder, Hamburg, Germany (source: http://www.
hhla.de/de/Geschaeftsfelder/HHLA_Container/Altenwerder_(CTA)/Daten_und_Fakten.jsp, vis-
ited on August 22, 2005)
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predictive approach might be adequate, in short-term scheduling, for instance,
plant managers often prefer to initiate only the next operation in an on-line manner.

When dispatching dual-load vehicles in seaport container terminals, the choice
is not so obvious. The high degree of stochasticity seems to favor myopic on-line
strategies, whereas predictive plans constructed by off-line strategies promise to
exploit the optimization potential resulting from the combination of different
transportation orders into a joint tour.

On-line dispatching is usually seen as appropriate in a highly dynamic planning
environment where only limited information about future events is available. In the
case of container terminals, the stochastic nature of the handling system is due to
internal as well as external factors. Internal factors are, for instance, short-term
decisions of quay crane operators to alter the sequence of handling operations,
while external factors include weather conditions, the unknown state of a container,
or congestion in the AGV traffic system. Because of these uncertainties, decisions
must be made without complete knowledge of the future events. One option to deal
with the stochastic nature of the logistics system is to employ on-line dispatching.
According to this dispatching mode, a decision is made when needed and
immediately executed (cf. Fiat and Woeginger 1998; Sgall 1998). In this case, no
predictive plan is generated. The schedule rather results from a sequence of on-line
decisions, which are made one at a time as the system status changes
(cf. Sabuncuoglu and Bayiz 2000). While the application of these rules is simple,
their inherent myopic and greedy nature may sacrifice their performance.

Off-line dispatching requires decisions to be made simultaneously for all
transportation orders occurring within a short-term look-ahead period. Thus, a
predictive schedule is constructed. However, due to the uncertainty of the future
events, the schedule may have to be revised when significant deviations occur, e.g.,
late arrival of AGVs, breakdown of equipment, or delays in performing the loading
and unloading tasks. This type of planning approach is therefore also termed
reactive planning (cf. Sabuncuoglu and Bayiz 2000).

Depending on the factors which trigger rescheduling, the following policies can
be distinguished:

– Periodic rescheduling takes place after predefined time intervals using rolling
time horizons (cf. Church and Uzsoy 1992).

– Event-driven rescheduling is carried out on significant deviations from the
current schedule. But also specific events, such as arrival of a new job, may
cause rescheduling (cf. Smith 1994; Vieira et al. 2003).

– In hybrid rescheduling, a combination of the above policies is applied
(cf. Church and Uzsoy 1992).

In this paper, we consider an event-based logic of the logistics control systems.
Thus, decisions are triggered by certain events, e.g., the completion of a
transportation order, or when the development of the logistics system deviates from
its predicted behavior, e.g., loading or unloading operations take significantly
longer than expected. A typical on-line dispatching strategy, adopted from flexible
manufacturing systems, is compared with a more sophisticated off-line heuristic
developed by the authors.
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4 Dispatching strategies

4.1 Characteristics of dispatching strategies

As stated above, the vehicle-dispatching problem at hand consists of assigning
transportation orders to AGVs and of determining the sequence of transportation
orders assigned to each vehicle. In the case of dual-load AGVs, which allow up to
two 20-ft containers to be loaded on one vehicle at the same time, also the
individual pick-up and drop-off operations of each order have to be sequenced.
Once the assignment and sequencing decisions have been made, the corresponding
pick-up and drop-off times can be derived in a straightforward manner for single-
load as well as for dual-load carriers.

As scheduling in a dynamic environment is usually accomplished by solving a
sequence of static problems, it has to be decided when a new static problem should
be solved. Within the paradigm of event-driven dispatching, certain triggering
events have to be identified. In on-line dispatching, no predictive schedule is
constructed, only a local decision on how to deal with an immediately upcoming
event (e.g., a new transportation order) is made. The advantage of this approach is
that AGVs are dispatched according to events which are relatively certain. On the
other hand, the myopic nature of this approach may lead to low-quality solutions.
As an alternative, we therefore construct a predictive schedule using the entire
information for a predefined look-ahead period. However, due to the stochastic
nature of the logistics processes in a seaport container terminal, this early uncertain
information is bound to change during the execution of the schedule and may
therefore require an adaptation of the schedule.

4.2 On-line dispatching strategies

In on-line dispatching, triggering events are generated when a new transportation
order is released (transportation-order-initiated dispatching) or an AGV becomes
available (vehicle-initiated dispatching). A transportation order is released once the
execution of the previous order has begun. In the case of a discharge order, the
order is released when the quay crane starts the lifting operation of the predecessor
container from the vessel. The next charge order of a quay crane is similarly
released once the pick-up operation of the predecessor container has been started at
the storage area. The transportation order is then assigned to an AGV if one is
available. Otherwise, it is kept in the set of unassigned orders.

However, the concept of vehicle availability has to be further specified. There
are two different views on when a vehicle should be considered available. From a
physical point of view, a vehicle is available when it is unloaded, i.e., no container
is placed on its loading platform. This concept, however, is rather myopic and not
suited for most planning decisions, as information about the logical status of the
vehicle (i.e., its actual schedule) is neglected. We therefore determine the
availability of an AGV based on its status after completing the current trip. A
single-load AGV is considered available during its trip to the drop-off location.
Dual-load vehicles are fully available during the trip to their last drop-off location
and partially available during the trip to the first pick-up location of a 20-ft
container or to the first drop-off location. Of course, both types of vehicles are
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considered available when parked idle at some dwell point in the guide path.
Vehicle-initiated dispatching is performed when a vehicle becomes fully available.
In this case, a job is selected from the set of unassigned orders.

If the AGVs are used as single-load carriers, one can build upon the dispatching
rules known from manufacturing and warehouse applications. In these environ-
ments, basic rules are used for the dispatching of single-load carriers or to find an
initial assignment for multi-load carriers (see, e.g., Egbelu and Tanchoco 1984;
Hwang and Kim 1998; Klein and Kim 1996; Lim et al. 2003; de Koster et al. 2004;
Le-Anh and de Koster 2005, and recently Lee and Srisawat 2006). These
approaches are typically restricted to a one-to-many assignment. Accordingly,
either one out of the feasible vehicles is assigned to a transportation order or from a
set of unassigned transportation orders one is assigned to an available vehicle.

Certainly the most popular representative for the first case, transportation-
order-initiated dispatching, is the nearest-vehicle (NV) rule which assigns the
vehicle located the closest to the pick-up location of a transportation order
whenever a new transportation order is initiated. This rule, however, may
discriminate vehicles that are very far from any active quay or stacking crane and
may, thus, lead to a rather disproportionate use of the available vehicles. One way
to avoid this drawback is to apply the least-utilized-vehicle (LUV) rule instead.
This rule aims at balancing the vehicles’ workload by preferring less utilized
vehicles for actual assignment. The utilization of a vehicle is measured by counting
the transportation orders completed so far and those already assigned to the vehicle.
Vehicle-initiated dispatching normally resorts to the first-come-first-served (FCFS)
strategy, which is applied to prioritize waiting transportation orders. Another
adequate dispatching strategy is the shortest-travel-time (STT) rule, which is the
vehicle-initiated counterpart of the NV rule. By this rule, transportation orders are
chosen according to the distance the vehicle would have to cover to service them.

After some initial experiments, we decided to define an on-line strategy, which
consists of a transportation-order-initiated and a vehicle-initiated component.
Based on our numerical experience, we combined the nearest-vehicle rule and the
first-come-first-served rule.

To utilize the full loading capacity of the AGVs, they must be operated in dual-
load carrier mode which requires more elaborate dispatching rules. The rules used
for multi-load carriers in manufacturing systems cannot as easily be employed for
the problem at hand. Rules used in manufacturing systems normally select
additional orders if they can be reached en route to the drop-off location of an
already loaded shipment. A common criterion for such rules is the deviation from
the route that has been scheduled so far. These rules therefore clearly require
information about the routing of the AGVs. These are easy to obtain for a
manufacturing system with its limited guide path network, where the actual routes
between the pairs of working stations are highly predictable. In a seaport container
terminal, however, the guide path is of much larger size and the grid structure of the
network allows far greater routing flexibility. The actual route may, in fact, depend
on the current traffic situation in the network. Furthermore, the fleet size of 50–100
AGVs operated in container terminals is significantly larger compared to
manufacturing systems. Hence, due to the increased traffic volume, the routing
complexity in container terminals is considerably higher. Finally, in the case of
container terminals, routing and traffic control routines are often provided by the
AGV manufacturer and encapsulated in the vehicles’ traffic control software.
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Therefore, they have to be considered a black box for vehicle dispatching. It is
mainly for these reasons that the rules from manufacturing systems could not be
adopted for the dispatching problem at hand.

Hence, we propose the following extended on-line dispatching rule for dual-
load AGVs in container port terminals: (1) The pick-up of a second container
should always take place after that of a container already assigned to the AGV. As a
result, no deviation from the actual trip could occur. (2) The sequence of the drop-
off operations of two loaded containers is determined by the nearest-destination
rule, prioritizing the container with the nearest drop-off location. In Fig. 3, the
pseudo-code for the on-line dispatching rule is given. The procedure is executed
each time an AGV has finished the last operation in its schedule or a new order is
released.

4.3 Off-line dispatching strategies

For off-line dispatching, we consider two types of triggering events, i.e., the
completion of a quay crane operation and exceeding a delay threshold. Off-line
approaches, in contrast to their on-line counterparts, generate a predictive schedule.
In our case, a schedule for the next t transportation orders at each of the quay cranes
is created. Hence, the schedule covers t· (number of quay cranes) transportation
orders. Once a quay crane operation has been completed, a new transportation
order must be included in the schedule to maintain the look-ahead horizon of t
transportation orders at this quay crane. The transportation orders are then assigned
to the AGVs. However, in the turbulent environment of container ports, deviations
between the generated schedule and the actual AGV trips are bound to occur.

Triggering events: „AGV finished last operation in schedule“, “new order released”. 

1. IF (triggeringEvent = „AGV finished last operation in schedule“

THEN go to step 2

ELSE go to step 3.

2. (vehicle initiated dispatching) 

IF (no unassigned order left)

THEN park AGV and exit procedure

ELSE assign AGV to the order with the earliest start time (FCFS-rule), return schedule and exit procedure.

3. (transportation order initiated dispatching) 

IF (released order comprises 40 ft container OR AGV type is “single-load”)

THEN go to step 3.1

ELSE go to step 3.2.

3.1 IF (no fully available AGV left)

THEN exit procedure and include transportation order in set of unassigned orders 

ELSE assign order to the nearest AGV (NV-rule), return schedule and exit procedure. 

3.2 IF (neither fully nor partially available AGV left)

THEN exit procedure and include transportation order in set of unassigned orders 

ELSE assign order to the nearest AGV (NV-rule), determine sequence of the drop-off operations of the two

orders assigned to this AGV according to the nearest-destination-rule, return schedule and exit procedure.

Fig. 3 Pseudo-code for the on-line dispatching rule
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Hence, the second type of triggering events is introduced, which prompts the
creation of a new schedule if the deviation exceeds a given threshold level.

There are two categories of transportation order assignments: temporary and
fixed assignments. An order is temporarily assigned if, during a future dispatching
request, the assignment can be broken up and the order can be assigned to another
AGV, while this is not feasible in the case of a fixed assignment. Fixed assignments
obviously decrease the possibility (and therefore the optimization potential) of
reactive scheduling and should be used carefully. In our off-line approach, fixed
assignments are only used for the actually performed order of each vehicle.

As an off-line dispatching strategy, a pattern-based heuristic has been
developed by the authors. In the sequel, only a sketch of the heuristic procedure
will be given (for details, the reader is referred to Grunow et al. 2004). This is
followed by some extensions of the basic version of the heuristic. In the pattern-
based heuristic, an m:n assignment of vehicles to transportation orders is
determined by iteratively solving an m:1 assignment problem. The transportation
orders in the planning horizon are considered one by one as they are released by the
overall logistics control system. For each transportation order in this sequence, the
possible assignment to each (partially or fully) available vehicle is evaluated.
Furthermore, for each possible assignment to a partially available vehicle, different
assignment patterns are tested, reflecting the feasible sequences of pick-up and
drop-off operations of the new transportation order and the one that has already
been assigned to the same vehicle in a previous step.

In our heuristic, we allow for patterns where pick-up and drop-off operations of
the new order are sequenced after those of the already assigned order [assignment
pattern “aann”, read assigned (pick-up)–assigned (drop-off)–new (pick-up)–new
(drop-off)], in between them (“anna”) or alternating (“anan”). Similar sequences
can be generated starting with the pick-up of the new transportation order (“nnaa”,
“naan”, and “nana”). In Fig. 4, all possible assignment patterns for 20-ft containers
are shown. Pick-up and drop-off operations are indicated by an arrow pointing
upwards or downwards, respectively. From the six theoretically possible assign-
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ment patterns, only three are considered in our pattern-based heuristic. At the time
the dispatching request is initiated, the vehicles might already be on their way to the
service point of the next operation. Thus, to avoid re-routing of a vehicle’s mission
and to prevent that an already assigned transportation order is infinitely delayed,
assignment patterns “nnaa”, “nana”, and “naan” are not considered here.

It should be noted that, in the basic version of this procedure (cf. Grunow et al.
2004), at most two transportation orders (of 20-ft containers) can be assigned to a
vehicle before it becomes unavailable. As the schedule of each AGV could thus
comprise at most four operations (two pick-up and two drop-off operations), the
possibility of constructing extended tours is not given. Especially in an off-line
strategy, AGV schedules comprising more than two transportation orders may be
advantageous. Hence, a natural extension of the basic pattern-based heuristic is to
allow more than two transportation orders to be assigned to each AGV.

However, an increased number of transportation orders leads to an exponential
growth of combinations of pick-up and drop-off operations, resulting in a
prohibitive runtime requirement for extended schedules. Therefore, in the extended
pattern-based heuristic, we restrict the number of feasible pick-up–drop-off
patterns in such a way that each transportation order can be interlocked with at most
one other transportation order (in the case of two 20-ft containers), i.e., pick-up and
drop-off operations p1 and d1 of the first order may only be interlocked with pick-
up and drop-off operations p2 and d2 of the second order but never with the
corresponding operations p3 and d3 of a third order, unless the drop-off operation
d1 of the first transportation order has been completed. Another reason for this
restriction is a practical one. The more transportation orders are interlocked, the
more orders are obviously affected, if a specific order cannot be performed in time.
As a result, extensive delays for a great number of orders could occur. Despite these
restrictions, the proposed approach is able to create extended schedules, taking
more advantage of the capabilities of the off-line dispatching strategy. Note that a
transportation order for a 40-ft container can obviously not be interlocked with
other transportation orders.

In the extended pattern-based heuristic, instead of identifying the status of an
AGV as simply fully available, partially available, or unavailable, each AGV
shows only two conditions, depending on the last order in its current schedule. If
the pick-up and drop-off operation of the last order refer to a 20-ft container and
they are scheduled successively, the vehicle is labeled as “S | pd”, meaning that its
schedule consists of some sequence of operations “S” followed by the pick-up and
drop-off operation of the last order in the current sequence (for a 20-ft container). A
new (20-ft container) order can now be appended to the current operation sequence
of the AGVaccording to the best of the three assignment patterns “aann”, “anan”,
or “anna” shown in Fig. 4. If, on the other hand, pick-up and drop-off operations
of the last order in the current sequence of the AGV are interlocked with those of
another transportation order (e.g., “p1-p2-d1-d2” or “p1-p2-d2-d1”), the label of
the vehicle is set to “S”. This label indicates that the schedule of an AGV consists
of a sequence of operations, where the last transportation order is interlocked with
some other order. The label is also set to “S” if the last order was a 40-ft container.
In such a case, a new order can only be assigned to that AGV according to the
pattern “aann”, i.e., appending pick-up and drop-off operation of the new order at
the end of the current schedule.
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In Fig. 5, the possible transitions between condition “S” and condition “S | pd”
are shown. There are two arcs leaving from “S”. They indicate that assignment
pattern “aann” is the only feasible one in condition “S”. If a transportation order for
a 40-ft container is appended to the schedule, the label remains at “S”. If the new
transportation order is for a 20-ft container, the status of the AGV changes to “S | pd”
On the other hand, should the AGV be in condition “S | pd”, then assignment pattern
“aann” for the inclusion of a 20-ft container transportation order maintains the initial
condition, while patterns “anan” and “anna” and the appendage of a transportation
order for a 40-ft container convert the AGV’s condition into “S”.

The feasible options for generating a chain of transportation orders for a single
AGV are illustrated in Fig. 6. (For the sake of clarity, only 20-ft containers are
considered. Note that an order for a 40-ft container can only be appended at the end
of a schedule, always leading to condition “S”.) At first, pick-up and drop-off
operations p1 and d1 of the first order are assigned to the vehicle. The resulting
condition of the vehicle is “S | pd” (node 1). The second order with operations
p2 and d2 can be appended by use of any of the assignment patterns, “aann”,
“anan”, or “anna” leading to nodes 2, 3, and 4. In node 2, the two orders are
executed successively, i.e., the corresponding handling operations are not
interlocked and the condition of the vehicle is identified as “S | pd”. Thus, any
of the assignment patterns can be used to append order 3 with operations p3 and d3
leading to nodes 5, 6, and 7. If, however, patterns “anan” or “anna” are selected, the
handling operations of the two orders are interlocked and the vehicle changes to
condition “S” (nodes 3 and 4). Hence, pattern “aann” is the only feasible to append
the third order leading to nodes 8 and 9, respectively. For each of the nodes 5 to 9,
the condition of the vehicle is identified as “S” or “S | pd” and the next order is
appended to the existing chain.

Regardless of which assignment option is used, after evaluating all feasible
assignments, the one with the lowest cost (e.g., waiting time of the quay crane) is
selected. The vehicles’ availability (or condition) is updated and a new iteration is
initiated for the next transportation order, now considering the modified condition
for each AGV. The heuristic terminates if all transportation orders in the planning
horizon are assigned to a vehicle. In Fig. 7, the pseudo-code for the pattern-based
heuristic is given. The procedure is executed each time the delay of an order
exceeds a predefined threshold level or a new order is released.

The pattern-based heuristic could also be used as an on-line strategy. However,
it only reveals its full potential in the off-line mode and has therefore been
exclusively used as an off-line approach in our investigations.

S

”anna

”aann

”

”anan

”

”aannS | p d”aann

”

(40 ft)

”aann (40 ft)

”

”

”

|

Fig. 5 Feasible transitions between the conditions of an AGV schedule
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A mixed-integer linear programming (MILP) model, which shows the clearest
off-line character, could alternatively be applied. In this approach, each vehicle is
assigned a sequence of transportation orders for the given time window. A detailed
description of the MILP model formulation of the dispatching problem for the case
of dual-load carriers can be found in Grunow et al. (2004). However, for problem
instances of realistic size, runtimes of the MILP model often exceed 1 min, which is
not acceptable for the problem at hand. Thus, this approach is not considered in our
numerical investigations.

The main problem when using MILP models (solved by use of standard
optimization software, such as ILOG OPL studio) for real-time applications is that
the resulting models are hardly scalable in terms of runtime requirement. After a
certain amount of time, the optimal solution is achieved, but one cannot expect, for
instance, to get a solution “half as good” in half the time.

5 Simulation study

5.1 Design of the simulation model

To evaluate the effectiveness of the various dispatching approaches, a
comprehensive simulation study has been conducted. A discrete event-based
simulation model has been developed using the eM-Plant 6.0 simulation system.
For modeling a real logistics system through simulation, a major issue in the design
of the simulation model refers to the definition of the system boundaries. We
decided to build up the simulated system around an AGV guide path and a fleet of
vehicles which transport 20- or 40-ft containers between quay cranes located at the
berth side and automated stacking cranes which operate at the different storage
blocks arranged at the opposite side of the guide path. Thus, sub-systems not
included in the simulation model are, for instance, the stowage and berth planning
for vessels, the storage planning for containers inside the storage blocks, the
interface to the hinterland, and the traffic control of the AGV system.

Ø aann

aann

p1-d1
S|pd

anan

anna

aann

anan

anna

p1-d1-p2-d2
S|pd

p1-p2-d1-d2
S

p1-p2-d2-d1
S

p1-d1-p2-d2-p3-d3
S|pd

p1-d1-p2-p3-d2-d3
S

aann

p1-d1-p2-p3-d3-d2
S

p1-p2-d2-d1-p3-d3
S|pd

aann

p1-p2-d1-d2-p3-d3
S|pd

10

2

3

4

5

6

7

8

9

Fig. 6 Generation of chains of transportation orders for a single AGV (20-ft containers;
grey-shaded areas show non-interlocked pick-up and drop-off operations at the end of an
operation chain)
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To simulate automated container terminals of a different size, a basic module
was defined which constitutes the building block of a flexible terminal
configuration (see Fig. 8). Hence, by combining various modules, a larger
terminal configuration can be generated. The basic module consists of four
elements: (1) the AGV guide path laid out as a four-lane uni-directional loop, (2) a
fleet of AGVs, (3) a single quay crane, and (4) two storage blocks equipped with
two automated stacking cranes each. However, we do not include the detailed
operations of the stacking cranes into the simulation model. In optional modules,
one or two of the storage blocks or the quay crane are omitted. Thus, an arbitrary
combination of quay cranes and storage blocks can be simulated. This design is
used to generate a terminal configuration with a series of storage blocks
concentrated in the center of the storage yard. AGVs are not dedicated to a single

Triggering events: „delay of order exceeds threshold level“, “new order released”. 

1. Break all order-AGV-assignments apart from fixed ones (next operation, loaded containers). 

Move all unassigned orders to the set ORDERPOOL. Determine status of AGVs (“S” or “S|pd”). 

2. IF (ORDERPOOL = )

THEN return (new) schedule  

ELSE go to step 3.

3. Set bestDelay:= . Define currOrder as the order in ORDERPOOL with the earliest start time. Move all

AGVs to the set AGVPOOL. 

4. Define currAGV as any element of AGVPOOL. AGVPOOL:= AGVPOOL\{currAGV}. 

5. Evaluate pattern “aann” for the combination currOrder-currAGV. 

IF (currDelay < bestDelay)  

THEN 

 bestDelay:=currDelay, bestAGV:=currAGV. 

IF (currOrder is a 20 ft container) THEN nextStatus:= “S|pd” ELSE nextStatus:= “S”. 

6. IF (status of currAGV is “S|pd” AND currOrder is a 20 ft container AND AGV type is “dual-load”)  

THEN go to step 7

ELSE go to step 9.

7. Evaluate pattern “anan” for the combination currOrder-currAGV. 

IF (currDelay < bestDelay)  

THEN bestDelay:=currDelay, bestAGV:=currAGV, nextStatus:= “S”. 

8. Evaluate pattern “anna” for the combination currOrder-currAGV. 

IF (currDelay < bestDelay)  

THEN bestDelay:=currDelay, bestAGV:=currAGV, nextStatus:= “S”. 

9. IF (AGVPOOL = )

THEN go to step 10

ELSE go to step 4.

10. Assign bestAGV to currOrder. Update status of bestAGV:=nextStatus.

ORDERPOOL:= ORDERPOOL\{currOrder}. Go to step 2.

Fig. 7 Pseudo-code for the pattern-based heuristic
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module but can freely commute in all modules. To generate a specific terminal
configuration, only five parameters are required:

1. the number of quay cranes
2. the number of storage blocks
3. the number of AGVs
4. the AGV travel time between two quay or stacking cranes
5. the AGV travel time between the storage area and the berth side

As an example, Fig. 9 displays a medium-sized terminal configuration with 10
quay cranes, 30 storage blocks, and AGV travel times of 20 and 10 s between two
quay cranes and between two storage blocks, respectively. The trip from the storage
area to the berth side or vice versa requires 10 s. All cranes in the system are linked
by a uni-directional mesh-type guide path in which only the traversals between the
quayside and the storage yard show a bi-directional orientation.

Moreover, our simulation model is based on the following major assumptions:

– The loading and unloading sequence of containers is known for each vessel.
– Travel times of vehicles are assumed to be deterministic.
– The cycle times of a quay crane and stacking crane are generated according to

the empirical distributions observed by Vis and Harika (2004) (for details, see
the next sub-section).

– One of the two stacking cranes at the storage blocks is used for loading and
unloading AGVs, while the other serves at the interface to the hinterland, e.g., at
docking stations for trucks or at the railway link.

– Transportation orders are generated according to the working cycle of the quay
cranes. For each quay crane, the storage block from where an export container is
to be picked up and to where an import container is to be delivered is randomly
selected.

QC

SCSC SCSCSC

AGV

parallel lanes

Fig. 8 Basic module of a terminal configuration. QC, quay crane; SC, stacking crane
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5.2 Experimental scenarios

The scenarios investigated in our study reflect realistic terminal environments and
consider stochastic variations in the timing and processing of loading and
unloading operations of containers. To evaluate the performance of the dispatching
strategies in extreme situations, a very high workload was simulated. It was
therefore assumed that no quay crane is running short of jobs—either loading or
unloading jobs—during the simulation. In real life, each quay crane is generally
idle for some time while waiting for the next vessel to berth. However, berth
planning for vessels is outside the defined system boundaries and therefore not
considered.

Throughout the numerical experiments, the degree of stochasticity is varied so
that the relative performance of the various dispatching methods can be assessed.
Each scenario is characterized by the number of quay and stacking cranes in the
terminal configuration and the stochastic variations of the handling time per
container. All the detailed data required to feed the simulation model
(e.g., container and equipment attributes) were generated according to the
guidelines of Hartmann (2004b), which were derived from the simulation project of
a modern automated container terminal. We specifically generated a number of
scenarios by varying the following experimental factors:

– Small, medium, and large terminal configurations were generated consisting of
5, 10, and 15 quay cranes as well as 15, 30, and 45 storage blocks, respectively.

– The average travel distance of a transportation order increases with the terminal
size. Hence, the appropriate AGV fleet size had to be determined
experimentally. We use 32, 72, and 120 AGVs in the small, medium, and
large terminal configuration, respectively.

– Different degrees of stochasticity were simulated by considering the cycle times
of the quay cranes and stacking cranes as random values which are determined
according to the empirical distributions observed by Vis and Harika (2004). We
distinguish four degrees of stochasticity:

– Deterministic: The cycle times were set to the mean values of the Vis/Harika
distributions.

– Low: The Vis/Harika distributions are compressed such that the structures
(including the mean value) are maintained but their variances are reduced to
half of the original value.

– Normal: Use of the original Vis/Harika empirical distributions.
– High: The Vis/Harika distributions are expanded such that the structures

(including the mean value) are maintained but their variances are doubled.

20s
10

s

10s

Fig. 9 Medium-sized terminal configuration generated from basic modules
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This distribution refers, for instance, to a scenario in which adverse weather
conditions prevail.

– Vehicles were operated alternatively as single- and dual-load carriers. In the
latter case, the capability of the vehicles of loading one 40-ft or two 20-ft
containers at a time was utilized.

– The share of 40-ft containers was set to 50%, which is a realistic value for
common terminals.

For each scenario, simulation experiments were repeated ten times with
different randomly generated input data. Based on the minimal cycle time for the
quay cranes, 1,000, 2,000, and 3,000 transportation orders were generated for the
small, medium, and large configuration scenario, respectively. For each data set,
the following two approaches were tested once for the single-load mode (“SLC”)
and once for the dual-load mode (“MLC”):

1. On-line dispatching using the combination of the basic rules “nearest-vehicle/
first-come-first-served (NV/FCFS)”

2. Off-line dispatching using the extended pattern-based heuristic (“Pattern”)

While the on-line approach only uses information about the next transportation
order of each quay crane or storage block, for the off-line heuristic a look-ahead
window of four transportation orders per quay crane was used. All these
transportation orders are considered by the pattern-based heuristic for the
generation of the actual predictive schedule. Reassignment of all operations
scheduled during the last dispatching request is allowed apart from the one to
which the vehicle is currently en route (to avoid deviations) and apart from the
drop-off of already picked up containers (which clearly must be done by the AGV
currently transporting the container). Apart from a new transportation order, the
off-line heuristic is also triggered once a significant deviation between the schedule
and the system status occurs. In our experiments, we use the delay of a pick-up or
drop-off operation as an indicator. The corresponding threshold value is set to 60 s.

5.3 Numerical results

As minimizing turnover time of the vessels is the most important performance
criterion for AGV dispatching, the different approaches are assessed with respect to
the overall processing time required to complete all transportation orders. We
compare the simulation results to a lower bound which is calculated individually
for each problem instance considering the sequence of the transportation orders at
each of the quay cranes and the derived sequences at the individual storage blocks.
For each operation, the actual handling times are taken into account, which were
generated according to the distribution of the corresponding degree of stochasticity.
Based on this information, an un-capacitated project scheduling problem is
formulated in which the precedence constraints refer to the sequences at the quay
and stacking cranes as well as the pick-up and drop-off operations of each
transportation order. The problem was modeled in ILOG OPL-Studio and solved
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using the commercial standard solver CPLEX 8.1 to generate lower bounds for all
problem instances. The complete model formulation is defined by:

Index sets and parameters
I+ Set of pick-up operations
i+∈I+ Pick-up operation for container i
I− Set of drop-off operations
i−∈I− Drop-off operation for container i
I=I+∪I− Set of all operationseΠ Set of ordered pairs (i1, i2) of operations with i1 being the direct

predecessor of i2 in the actual schedule of a crane (as realized in
the simulation)

s∈S Locations in the guide path (quay or stacking cranes)ethi Actual duration of operation i (as realized in the simulation)
si Location at which operation i takes place
d(si, sk) Travel time between si and sk
Decision variables
tstarti Earliest start time of operation i
tendi Earliest finish time of operation i
F Makespan
Model formulation
MinF

subject to

F � tendi 8i 2 I

tstarti þethi ¼ tendi 8i 2 I

tendi1 � tstarti2 8 i1; i2ð Þ 2 eΠ
tendþ þ d iþ; i�ð Þ � tstarti� 8 iþi�ð Þ
tstarti ; tendi � 0 8i 2 I

F � 0

The first two constraints define the makespan and the earliest start and finish
time of each operation. The next two constraints assure that the precedence
constraints imposed by the crane schedules and the relation between pick-up and
drop-off operation of the same order are met. The minimum makespan referred to
in the objective function gives the lower bound.

In our experiments, the lower bounds for the overall processing time assume
values of 6 h and more. This compares to an average operation time of the quay
cranes of 3 h (=average cycle time of 1:05 · 200 transportation orders per quay
crane). This gap can only be closed if the selection of the storage block and the
sequencing of the operations at the stacking cranes are improved. However, these
decisions are beyond the scope of this paper which focuses on AGV dispatching. In
compliance with the common container terminal practice, the AGV system is
regarded as a subordinate service system which is operated on the basis of fixed
target data supplied by the quay and stacking cranes.

By examining the detailed simulation results of preliminary numerical tests, we
detected deadlock situations, which hampered the system performance. We
therefore developed specific deadlock handling strategies and included them in the
simulation model used for the numerical investigation. A detailed presentation of
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these deadlock handling strategies can be found in the companion paper by
Lehmann et al. (2006).

The main research questions addressed in our numerical investigation are the
following:

– How does the degree of stochasticity affect the performance of the dispatching
strategies?

– Does the size of the terminal configuration have a major impact on the relative
performance of the dispatching strategies?

– How do the on-line (“NV/FCFS”) and the off-line (“Pattern”) strategy perform
against each other?

– Can the system performance of the terminal be improved by utilizing the multi-
load capability (“MLC”) of the AGVs compared to the single-load carrier
(“SLC”) mode?

Figure 10 shows the final results of the simulation experiments in comparison
to the lower bound. As a general result, we found that the performance of the
investigated dispatching strategies shows similar characteristics for the three
investigated terminal configurations. In all cases, the extended pattern-based
heuristic clearly outperforms the on-line (“NV/FCFS”) heuristic. Its overall
processing time deviates from the lower bound between 4.5 and 14% for the small,
2.5 and 10% for the medium, and 1.5 and 7.5% for the large terminal configuration.
The superior performance for the larger configurations is mainly due to the fact that
the scheduling frequency increases, as—due to the increased number of quay
cranes—a larger number of transportation orders is considered in the planning
horizon. On average, every 4.3 s, an additional transportation order triggers a
dispatching request in the large terminal configuration, while the average time
between dispatching requests triggered by transportation orders is 13 s for the small
terminal configuration. In particular, the result for the most realistic scenario, i.e.,
the large terminal configuration with a normal degree of stochasticity, seems to
indicate that the developed approach is appropriate. In this case, a deviation from
the lower bound of less than 5% was observed.

The tested on-line heuristics show a deviation from the lower bound of between
17 and 33%. These results clearly demonstrate that the on-line approach, in contrast
to the pattern-based heuristic, is unable to exploit the optimization potential which
results from coordinated dispatching of the entire AGV fleet over a limited time
horizon.

The general effect of an increasing degree of stochasticity is identical for all
approaches. It impairs the performance of the heuristics. However, the performance
reduction for the pattern-based heuristic is far less than expected. No convergence
of the off-line and on-line heuristics can be observed especially. The off-line
character of the pattern-based heuristic is apparently not very distinctive. This is
probably due to the high scheduling frequency and to additional triggering of
dispatching requests once the delay threshold has been exceeded.

The version of the pattern-based heuristic, which utilizes the multi-load
capability of the AGVs, achieves better results than the pattern heuristic, which
treats the AGVs as single-load carriers. This result is highly relevant for terminal
operators being currently reluctant to actually use the additional dispatching
flexibility and dual-load capability provided by the vehicle technology.
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As can be seen from our experimental results, the additional scheduling
complexity does result in improved system performance. In our simulation study,
the advantage of the multi-load heuristic shrinks for the larger terminal
configurations (in one case, it even becomes negative). This is mainly due to the
random assignment of storage locations employed in our simulation experiments.
As a result, the average distance between storage blocks from where a container is
retrieved or to where it is to be delivered increases with enhanced terminal size.
Hence, combining transportation orders becomes less appealing. This effect can
also be seen from Fig. 11, which shows that the share of dual-loads decreases with
the terminal size. A less simplistic storage block assignment method would
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Fig. 10 Performance of dispatching heuristics for different sizes of terminal configurations and
different degrees of stochasticity
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definitely help to further realize the benefits of the multi-load capability of AGVs
in a large-terminal configuration.

Figure 11 also shows that—contrary to the pattern-based heuristic—the share of
20-ft containers which is transported in dual-load mode increases with the size of
the terminal configuration for the on-line heuristic (“NV/FCFS_MLC”). At any
given point in time, when a dispatching request is triggered, the probability
increases that an AGV is underway which is only partially loaded and to which a
second 20-ft container can be assigned. However, the choice of partially loaded
AGVs is rather limited. This is particularly true for small-terminal configurations.
If one or more AGVs are available, an assignment must still be made. The
determined dual-load assignment may therefore result in an AGV tour which leads
to large delays. Due to the myopic nature of the on-line heuristic, this decision is
not revised at a later stage. This also explains the poor performance of the on-line
heuristic for the multi-load mode which is even worse than its performance for the
single-mode case (cf. Fig. 10).

In contrast, the pattern-based heuristic also considers AGVs which will become
available in the future. A larger choice of AGVs (in fact the entire fleet) is
considered for the assignment. This results in AGV schedules of a higher quality.
Moreover, the pattern-based heuristic revises assignments, if the AGV is not
already on its way to execute the corresponding transportation order.

Figure 12 shows the average number of dispatching requests per order for the
large scenario. (The figures for the smaller scenarios are very similar.) For the
deterministic scenario, there are about 1.6 requests per order for the on-line
heuristic and about 1.4 requests for the pattern-based heuristic. For each order, one
request is initiated by a transportation order. For the on-line approach, additional
0.6 vehicle-initiated requests occur. For the pattern-based approach, additional 0.4
requests are triggered by delays. In contrast to the on-line heuristic for which the
number of vehicle-initiated dispatching requests is rather insensitive to the
stochasticity level, the number of delay-triggered dispatching requests increases
significantly for the pattern-based heuristic. In this case, the average number of
requests per order reaches 2.5 for the highly stochastic scenario. By adapting the
scheduling frequency to the requirements of the problem environment, the pattern-
based heuristic thus shows a considerable flexibility.

For the pattern-based heuristic, the average number of dispatching requests per
order decreases with the scenario size (see Fig. 13). The frequency of
transportation-order-initiated dispatching requests is higher than for the larger
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Fig. 11 Share of 20-ft containers transported as dual loads (depending on the size of the terminal
configuration)
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scenarios. Therefore, less additional delay-triggered dispatching requests are
needed.

The high scheduling frequency required for the pattern-based heuristic
obviously poses high demand on the computation time of the heuristics. However,
even for the large-sized terminal configurations, which represent scenarios of
practical size, the average runtime of each approach was less than 1 s per
dispatching request even though the procedures were executed in the interpreter
mode of the used simulator eM-Plant. Thus, the approaches perfectly meet the
requirements of a real-time application environment of seaport container terminals
in practice.

6 Summary and outlook

The main contribution of this paper is the development of rule-based strategies for
the AGV dispatching problem in seaport container terminals and their evaluation
by use of a scalable event-driven simulation model which allows to model terminal
configurations of practical size. The generation of realistic experimental scenarios
including the determination of adequate values of relevant model parameters and
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the definition of the system boundaries of the simulation model are described in
detail. After a brief discussion of the AGV dispatching problem at hand, two
principle approaches—on-line and off-line dispatching—are introduced. A basic
on-line dispatching rule and a more sophisticated off-line heuristic are developed
and compared in a detailed simulation study considering stochastic handling times,
various terminal configurations, and operation modes of the AGVs. In particular,
single- and dual-load carrier modes are evaluated.

As a result of the numerical investigation, it could be shown that all dispatching
approaches were rather insensitive to the size of the terminal configuration.
Moreover, runtimes of less than 1 s meet the requirements of real-time dispatching
systems. The off-line heuristic clearly outperformed their on-line counterpart. It
shows a relative deviation from a lower bound (which was derived on the basis of
given quay and stacking crane sequences) of less than 5% for the most realistic case
of a large-terminal configuration and a degree of stochasticity, which corresponds
to results observed in empirical studies. The use of the dual-load capability plays a
key role in obtaining this result. It is employed for more than 30% of all 20-ft
containers.

One way to close the remaining gap is to implement improvement heuristics
such as neighborhood search, which further improve the solution found by the
pattern-based heuristic, until the result has to be transmitted to the logistics control
system. The authors plan to implement this approach in their future research work.
Detailed investigations of common neighborhoods for the problem at hand can be
found in Nanry and Barnes (2000) and Nanry (1998).

Even without these potential enhancements, the proposed method for AGV
dispatching derives close-to-optimum solutions for the case of an AGV system
which is regarded as a service system for quay and stacking cranes. However, the
lower bound derived in this paper indicates that the quay and stacking crane
sequences have a large impact on the utilization of these resources. Our future
research will thus aim at integrating the decisions on storage block assignment and
sequencing the operations of stacking cranes.
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Dispatching vehicles in a mega container 
terminal

Abstract We consider a container terminal discharging and uploading containers to 
and from ships. The discharged containers are stored at prespecified storage loca-
tions in the terminal yard. Containers are moved between the ship area and the yard 
using a fleet of vehicles, each of which can carry one container at a time. The prob-
lem is to dispatch vehicles to the containers so as to minimize the total time it takes 
to serve a ship, which is the total time it takes to discharge all containers from the 
ship and upload new containers onto the ship. We develop easily implementable 
heuristic algorithms and identify both the absolute and asymptotic worst-case per-
formance ratios of these heuristics. In simple settings, most of these algorithms are 
optimal, while in more general settings, we show, through numerical experiments, 
that these algorithms obtain near-optimal results for the dispatching problem. 
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1 Introduction and motivation 

In the last few years we have seen the breakdown of many trade barriers and the 
globalization of trade. These developments have increased the importance of logis-
tics and transportation, and in particular, the importance of marine transportation 
systems. These systems include a network of terminals around the globe that allow 
manufacturers and shippers to deliver goods quickly to their customers. These 
terminals serve as hubs for the transshipment of containers from ship to ship or 
to other modes of transportation, e.g., rail and trucks. In this paper we analyze a 
container terminal, where the majority of the terminal operations consists of ship-
to-ship transshipments.  

In today’s competitive market place, a speedy transshipment of containers to 
and from ships is important to both the carrier, since it provides significant opera-
tional efficiencies, and to the terminal, which can handle a large number of ships 
per day. Unfortunately, in many regions around the globe, the terminals are now 
working at, or close to, capacity and there is significant pressure from the business 
sectors to increase terminal throughput and, in particular, to decrease ship turn-
around time at the terminal. In most cases, this requires the development of 
methodology and tools which will allow the efficient coordination of activities 
within the terminal area. In this paper we consider one aspect of the terminal 
operation, which is to dispatch vehicles to containers in the terminal. This research 
was motivated by our industry partner, who operates a major container terminal. 
In what follows, we describe the operations of this container terminal, noting here 
that most container terminals operate in a similar way.  

When a ship arrives at the terminal, containers are first discharged from the ship 
onto vehicles by quay cranes; the vehicles then transport the containers to various 
storage locations in the yard area. Typically, after most, or all, containers have been 
discharged from the ship, other containers are uploaded onto the ship. These con-
tainers are carried by vehicles from the yard to the ship area, and are loaded onto to 
ship by the quay cranes. Thus, two types of cranes exist in the terminal: quay cranes,
which are used to load and unload containers to and from the ship, and yard cranes,
which are used to load and unload containers at the terminal yard storage area.  

Most containers handled by the terminal are standard size (Twenty-foot-
equivalent unit (TEU)) containers. Due to the large container sizes, a crane would 
unload a container only onto a vehicle; unloading to the ground would require 
additional crane operation to lift the container from the ground and load onto a 
vehicle, and therefore, is not desirable. Thus, a vehicle needs to be available by the 
crane throughout the loading and unloading operations. This constraint will be 
further discussed in Section 3.  

The terminal typically handles a small number of ships at a time, and each ship is 
served by a number of quay cranes. A few hours before the arrival of an incoming 
ship, the terminal receives detailed information about its contents; i.e., containers 
that are to be discharged into the yard, as well as a list of containers currently in the 
yard that should be uploaded onto the ship. This information allows the terminal 
dispatchers to generate the so-called crane job sequence: For each quay crane serv-
ing the ship, a detailed sequence specifying the order of the containers that are to be 
discharged/loaded onto the ship. This sequence is mainly determined by the current 
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positions of the containers on the ship, their destinations and contents. Containers 
can be stacked on top of each other on the ship. Thus, the sequence in which con-
tainers will be discharged is based on the containers’ current positions on the ship. 
Similarly, the sequence in which containers will be uploaded onto the ship is ba-
sed on the contents of the containers (i.e., if a container is carrying delicate items, 
then no container can be stored on top of it on the ship; thus, this container must 
be stored at the top of a stack). This information, together with the container’s 
destination, is used to determine an uploading sequence. Finally, of course, the 
sequence always starts with discharged containers, which are followed by the 
containers loaded onto the ship.  

Thus, at any point in time, the quay crane operator has information on the next 
container he/she is going to work on. If this is a container to be discharged from 
the ship, then the crane sequence will identify a number of potential storage loca-
tions, typically two to four, in the yard for this container. If this is a container to be 
loaded onto the ship, then the crane sequence also identifies the current location of 
the container in the yard area.  

It is no surprise that managing, controlling and operating such a system is very 
complex. At the operational level the questions are clear: how should vehicles be 
dispatched to containers, what is an optimal location for a container discharged 
from the ship, how should vehicles be routed in this complex network, and what is 
an effective traffic control mechanism? Similarly, at the strategic level, the issues 
include optimizing the number of quay cranes, vehicles and yard cranes.  

Evidently, these issues are interrelated. Unfortunately, solving a single inte-
grated model that addresses, for instance, all the operational decisions, is well 
beyond today’s computing capability. For that reason, in this research we decom-
pose the problem into several related models: dispatching vehicles to containers, 
assigning discharged containers to specific locations, and routing vehicles. Our 
approach is to analyze each model separately in order to gain an insight into the 
system (see [4]). In this study, we focus on the problem of dispatching vehicles to 
the containers for a single ship, assuming that a fleet of vehicles are already as-
signed to this ship. In doing so, we treat other aspects of the system management 
as given inputs. This includes selecting an appropriate location for a discharged 
container, vehicle routing, traffic control, etc. Specifically, we focus on the im-
pacts of vehicle deployment on the system throughput. Our objective is to find 
easily implementable vehicle dispatching policies that minimize the ship makespan,
which is the time the last vehicle returns to the ship area after all containers are 
discharged from the ship and are taken to their storage locations in the yard, and 
all new containers are uploaded onto the ship. We refer to this problem as the 
vehicle dispatching problem.

This paper is organized as follows. In the next section, we give a brief review 
of the related literature. In Section 3, we consider the vehicle dispatching model 
for a single ship with a single quay crane, and analyze the performance of differ-
ent vehicle dispatching policies on discharging job sequences, uploading job 
sequences, and combined job sequences. Based on the insights obtained for these 
simple models, in Section 4 we analyze a more general model of a single ship with 
multiple quay cranes, and test the performance of the proposed heuristics using 
computational analysis. Finally, in Section 5, we discuss future research directions 
and extensions to the vehicle dispatching problem.  
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2 Literature review

Problems associated with dispatching and routing vehicles arise frequently in logis-
tics systems, see, for instance, Bramel and Simchi-Levi [5]. Thus, these problems
have been extensively studied in the operations research/management science litera-
ture under different settings including, but not limited to, vehicle fleet management,
truck routing, and warehouse management. Unfortunately, most of this research is
not directly applicable to a container terminal operation due to its unique character-
istics. This, in turn, requires the development of algorithms that take into account
the special characteristics and constraints associated with container terminals.

This review is not meant to be exhaustive, but rather indicative of the recent
developments that are most related to the problem analyzed here; see Bish [2] and
Bish et al. [3] for more extensive reviews of the other related areas, such as material
handling systems and resource-constrained scheduling, and Steenken, Voss and
Stahlbock [16] and Vis and De Koster [19] for overviews of container terminal
operations research.

Most of the literature on container terminals has used queuing theory to analyze
terminal operations. These queuing models focus on strategic issues such as deter-
mining the equipment capacity, both on the water-side (such as berth capacity), and
on the land-side (such as the number of quay cranes, vehicles, and yard cranes); see,
for instance, Daganzo [7]. Several researchers focus on the operational level issues,
such as scheduling the cranes and determining storage locations for the unloaded
containers (see, for instance [2,3,6,10–15]).

Most recently, Kim and Bae [9] develop vehicle dispatching methods in con-
tainer terminals by utilizing information on locations and times of future delivery
tasks. They develop a mixed-integer programming model for assigning optimal
delivery tasks to vehicles. Since the mathematical model requires an excessive
amount of computational time, they also propose a heuristic algorithm; their nu-
merical study indicates that the proposed heuristic is quite effective. Vis, De Koster
and Savelsbergh [18] also consider the transport of containers between the ship
and the yard, with the objective of minimizing the number of vehicles used. These
two papers assume that each vehicle has a unit-load capacity. Grunow, Gunther and
Lehmann [8] further analyze dispatching methods for multi-load vehicles in highly
automated container terminals. This stream of research focuses on equipment al-
location and dispatching problems, while Vis and Harika [17] and Yang, Choi and
Ha [20] evaluate the relative performance of AGVs (Automated Guided Vehicle)
and ALVs (Automated Lifting Vehicle) at container terminals.

In this paper, our objective is to develop algorithms that are easy to implement,
especially for large problem sizes, and whose effectiveness can be characterized
analytically. For this purpose, we focus on simple vehicle dispatching rules, and
develop analytical bounds on the deviation of the heuristic solution from the opti-
mal solution for any problem instance as well as for large problem instances, and
complement our analysis with a numerical study.
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3 The vehicle dispatching problem:
A single crane model

In what follows, we first analyze the vehicle dispatching problem by focusing on
a single ship single quay crane model, and obtain insights into the effectiveness
of various algorithms for different instances of this problem. In Section 4, we use
these insights to analyze a more general problem with multiple quay cranes.

Thus, we first consider a single ship served by a single quay crane with a
fixed number, k, of vehicles assigned to it. We assume that all the vehicles are
initially at the ship area and return to the ship area after completing the discharging
and uploading of the ship. Throughout, we use the terms dispatching policy and
algorithm interchangeably, and we refer to each container as a job. Throughout the
paper, we assume that the yard cranes are always available (similar assumptions are
used in other papers on container terminal operations; see, for instance, Kim and
Bae [9]) and all operation times are deterministic (however, as will be shown in the
sequel, some of our results still hold even when these operation times are random).

As mentioned above, our objective is to find an effective dispatching policy that
assigns vehicles to jobs so as to minimize the makespan. In the vehicle dispatching
problem, makespan is the time the last vehicle returns to the ship area after all
containers are discharged and are taken to their locations in the yard, and after all
containers are uploaded onto the ship.

Associated with the quay crane is a predetermined crane job sequence,

J−/+ : {J1, J2, · · · , Jn},

with Ji, i = 1, 2, . . . , n, being either a job to be discharged from the ship (denoted
by a “–” job) or a job to be loaded onto the ship (denoted by a “+” job). The job
sequence may consist of only “–” jobs, in which case it is denoted by J−, only “+”
jobs, in which case it is denoted by J+, or a mix of “–” and “+”jobs, in which case
it is denoted by J−/+.

If the job sequence is a J−/+ sequence, then it consists of two parts: the first
part includes all the jobs to be discharged from the ship, that is, all the “–” jobs,
while the second part includes all the jobs to be loaded onto the ship, that is, all the
“+” jobs.

Obviously, this predetermined job sequence imposes precedence constraints
among the jobs. That is, a “–” job cannot be discharged until all “–” jobs preceding
it in the job sequence are discharged; in other words, the quay crane cannot start the
task of discharging a specific “–” job until all its predecessor “–” jobs have been
discharged from the ship. Similarly, the quay crane cannot load a “+” job until all
“+” jobs preceding it in the job sequence are loaded onto the ship. Finally, a “+”
job cannot be loaded until all “–” jobs in the sequence have been discharged.

Each “–” (“+”) job requires a crane movement that will lift it up from the
ship (or the vehicle), and place it onto a vehicle (or the ship). Clearly, a vehicle
needs to be available by the crane only during the time the crane is placing the
job onto the vehicle. Thus, the total crane processing time of a job consists of two
components: one is the lifting time, the other is the placing time (during which
a vehicle is needed by the crane). For notational convenience and simplicity, we

Dispatching vehicles in a mega container terminal
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do not distinguish between these two components, and assume that each vehicle
needs to be available by the crane throughout the discharging/uploading process.
However, the subsequent analysis can be easily modified to handle the case where
there are two separate components for crane processing, and a vehicle needs to be
available only during the placing time. In our analysis, we assume that the time
required to discharge/upload a container by the quay crane is deterministic, and is
the same for all the jobs. We denote this time by s.

Containers are carried between the ship area and the yard using a fleet of vehi-
cles, each of which can carry one container at a time. Without loss of generality, we
assume that each vehicle travels at unit speed, i.e., each vehicle travels one unit of
distance per unit time, all vehicle travel times between the ship area and a specific
location in the yard are deterministic and are known in advance.

To simplify the analysis, we assume, throughout the paper, that there is always
an available yard crane ready to respond to a service request of any vehicle. Thus, the
time it takes a yard crane to load or unload a container is assumed to be incorporated
into the container travel times between the ship area and the yard area. Therefore,
throughout, the term crane will always refer to a quay crane.

Associated with each “–” (“+”) job is a predetermined drop-off (pick-up) point
in the yard, called the location of the job. Let di be the travel time from the ship to
job Ji’s location; i.e., the drop off location of Ji if it is a “–” job, or the pick up point
of job Ji if it is a “+” job. We refer to di as travel time or distance interchangeably.

We first describe the greedy algorithm: The first k (=number of vehicles) jobs are
assigned, each to a single vehicle. We then assign the next job to the first available
vehicle. Specifically, when assigning a “–” job, the first available vehicle that arrives
at the quay crane will be dispatched to this job. Similarly, when assigning a “+”
job, the first available vehicle that can arrive at the job’s location at the earliest time
will be dispatched to this job. That is, if a vehicle is currently busy with another job
assignment, then the time it can be available at the next “+” job’s location will be the
time it completes its current assignment plus the traveling time from the destination
of its current assignment to the next job’s location; if a vehicle is currently free,
then this time will simply be the traveling time from its current location to the next
job’s location. Based on these times, we then select the vehicle that can arrive at
the next job’s location at the earliest time.

In the following sections, we present our results for different cases of the vehicle
dispatching problem.

3.1 Analysis of various dispatching policies

3.1.1 J− Job sequences

Consider a J− job sequence. Note that for such a job sequence, once a vehicle takes
a “–” job, it has to drop the job to its location in the yard, and then it has to make an
empty trip back to the ship area to take its next job. We apply the greedy algorithm
defined above to dispatch vehicles to jobs. We have the following result, whose
proof is straightforward and is thus omitted.
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Theorem 1 For any J− job sequence, the greedy algorithm is optimal, that is, the
greedy algorithm minimizes the makespan.

Remark The greedy algorithm is still optimal even if crane processing times are
job-specific, that is, the quay crane time associated with job Ji is si, and not a
constant s. Similarly, it is optimal even when the vehicle travel time and quay crane
processing times for each job are random variables.

To illustrate the greedy algorithm, consider an example with four “–” jobs:

J− : {J1, J2, J3, J4},

with d1 = 1, d2 = 5, d3 = 1, d4 = 5 and s = 2 (all in minutes). Let k = 2 and in
what follows we use V1 and V2 to denote the two vehicles. The greedy algorithm
works as follows. First, assign V1 to J1 and V2 to J2. After s = 2 minutes, V1 leaves
the crane with J1, and the crane starts discharging J2. After another 2 minutes, V2
leaves with J2. Now the first available vehicle for jobs J3 and J4 is clearly V1
by times 4 and 8, respectively. The dispatching solution can be represented as
V1 : {J1, J3, J4}, and V2 : {J2}. The completion time for this J− sequence is
20(= 8 + 2 + 10) minutes.

3.1.2 J+ Job sequences

Consider now a J+ job sequence. For such a job sequence, once a vehicle is assigned
to a “+” job, it makes an empty trip to the job‘s location starting from the ship area,
takes the job, and returns back to the ship area with the job. It is easy to see that
the greedy algorithm does not necessarily generate an optimal strategy for a J+ job
sequence.

Given a job sequence J+ : {J1, J2, . . . , Jn}, consider the following polyno-
mial time algorithm, called the reversed greedy algorithm. The reversed greedy
algorithm works as follows: Replace each “+” job by a “–” job with the same
location, that is, if location p is the pick-up point for a specific “+” job, the asso-
ciated “–” job has location p as its drop-off point. Now, reverse the order to get
the reversed job sequence JR

− : {Jn, Jn−1, . . . , J2, J1}. Apply the greedy algo-
rithm to this reversed list (of “–” jobs), to obtain a set of jobs assigned to each
vehicle. For instance, the jobs assigned to vehicle l, l = 1, 2, . . . , k, are given by
Vl : {Jl1 , Jl2 , . . . , Jlfl−1 , Jlfl

} and they are served by the lth vehicle following
that order. The final step of the algorithm is to reverse again the sequence of jobs
assigned to each vehicle. That is, vehicle l will serve this set of jobs assigned to it
following the order: {Jlfl

, Jlfl−1 , . . . , Jl2 , Jl1}.
We have the following result (please see Appendix for the proof):

Theorem 2 The reversed greedy algorithm is optimal for any J+ instance.

Remark Theorem 2 still holds when the crane processing times are job-specific.

Although we have identified the optimal vehicle dispatching rule for uploading
job sequences, it is interesting to study how well the simple greedy algorithm,
introduced in the previous section, would perform for such job sequences. This is
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Table 1. Average percent deviation of the greedy algorithm’s makespan from optimality for
uploading job sequences

500 Uploading jobs
Spread a 2 6 10 16

4 1.8 % 4.6 % 5.8 % 8.6 %
5 2.3 % 5.5 % 9.6 % 10.1 %

k 6 2.6 % 6.3 % 9.8 % 9.9 %
7 2.4 % 6.6 % 10.5 % 11.2 %
8 2.6 % 6.4 % 11.0 % 12.1 %

because the greedy algorithm is an appealing dispatching policy due to its ease of
implementation, flexibility, and robustness (i.e., minor disruptions to the schedule
can be easily handled by the greedy algorithm, which schedules jobs one at a
time, following the order of the job sequence. This, however, is not true for the
reversed greedy algorithm, in which small changes to the schedule would require
the entire schedule to be regenerated by the reversed greedy.) For this purpose, we
have conducted computational experiments, the results of which are presented in
the next section.

3.1.3 Computational analysis of the greedy algorithm for J+ sequences

In this section, we analyze the effectiveness of the greedy algorithm for uploading
job sequences. We consider sequences each consisting of 500 “+” jobs. We set
the crane discharging/uploading time to be 3 minutes (s = 3). The traveling time
of each job (between the ship area and its location in the yard area) is generated
from a uniform distribution. To determine the impact of job distribution in the yard
on the performance of the greedy algorithm, we use four different sets of range
(spread) in our uniform distribution: in the first set, traveling times are uniformly
distributed between 2 and 4 minutes (with a spread, a, of 2 minutes), in the second
set, between 2 and 8 minutes (a = 6), in the third, between 2 and 12 minutes
(a = 10), and in the fourth, between 2 and 18 minutes (a = 16). Thus, as a
increases, job locations become more spread apart from each other in the yard area.
We replicate each scenario 500 times and determine the percent deviation of the
makespan obtained by the greedy algorithm from the optimal makespan (obtained
by the reversed greedy algorithm) over the 500 problems. The results are reported
in Table 1.

As can be seen from the table, the greedy algorithm generates schedules with
a makespan of at most 12% over the optimal makespan. For a fixed number of
vehicles, k, the ratio increases with the spread, a. Thus, the gap between the optimal
makespan and the makespan of the greedy algorithm increases as jobs get more
spread out in the yard area. Similarly, for a fixed value of a, the performance of the
greedy algorithm generally deteriorates as the number of vehicles increases.

In practice, terminal dispatchers shelf most “+” jobs that will be loaded onto
a particular ship in adjacent clusters in the yard area. Thus, the “spread” for these
jobs is usually small. Consequently, we believe that the greedy algorithm would
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provide a rather efficient solution to “+” job sequences, and therefore, is a desirable
approach due to its simplicity and flexibility.

3.1.4 J−/+ job sequences

Consider now a general J−/+ job sequence. As mentioned above, if the schedule of
a vehicle ends with a “–” job, then the vehicle has to make an empty trip back to the
ship area after dropping its last “–” job in the yard area. Similarly, if the schedule of
a vehicle begins with a “+” job, then the vehicle has to make an empty trip from the
ship area to the yard area to take the “+” job. However, if the schedule of a vehicle
is such that the vehicle takes its first “+” job after dropping its last “–” job, then
the vehicle saves these two empty trips, and instead, it travels from the location of
its last “–” job to the location of its first “+” job. These travel times are sequence
dependent, since they depend on the order of the jobs taken by the vehicle.

The optimality of the greedy algorithm for J− job sequences and the optimal-
ity of the reversed greedy algorithm for J+ job sequences suggest the following
algorithm for a J−/+ job sequence.

We start with the greedy algorithm applied to the first part of the job sequence,
which consists of all the “–” jobs. We then apply the reversed greedy algorithm to
the second part of the job sequence which consists of all the “+” jobs. Finally, we
combine the two schedules. We refer to this algorithm as the combined algorithm
(please see Bish et. al [1] for details).

We let ZC and Z∗ respectively denote the makespan obtained by the combined
algorithm and the optimal makespan and n denote the number of jobs in the se-
quence. The next theorem characterizes the effectiveness of the combined algorithm
(see Bish et. al [1] for its proof).

Theorem 3 For every finite instance of a J−/+ job sequence, we have

ZC

Z∗ ≤ 3.

In addition,

lim
n→∞

ZC

Z∗ = 1.

The asymptotical performance of the algorithm is especially important, since in
practice the number of jobs is in thousands. In addition, in Bish et. al [1] we provide
a pseudo-polynomial time algorithm that is optimal for any instance of J−/+ job
sequences.

In the next section, we use the insights obtained for the single crane model to
analyze the vehicle dispatching problem with multiple quay cranes.

4 The vehicle dispatching problem:
A multiple crane model

In the previous sections we focused on a single crane model, and showed that the
greedy algorithm is optimal (i.e., it minimizes the ship makespan) for a discharging
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(J−) job sequence, and the reversed greedy algorithm is optimal for an uploading
(J+) job sequence. Our next objective is to extend this analysis to the more general
case, where multiple quay cranes are assigned to serve a single ship. Associated
with each quay crane is a job sequence and the objective is to assign vehicles to
containers so as to minimize the time all jobs are done. That is, the objective is to
minimize the makespan over all quay cranes. This objective is consistent with a
terminal’s objective of releasing ships at the earliest possible time.

Thus, the next question is whether the greedy and reversed greedy algorithms
continue to be optimal for discharging and uploading job sequences, respectively,
when there are multiple cranes. We first focus on situations in which each quay
crane has a J− job sequence. In the multi-crane environment, the greedy algorithm
should be interpreted as assigning an available vehicle to the first available ship
crane. In this case, however, it is easy to construct examples that demonstrate the
greedy algorithm not necessarily to be optimal.

In practice, however, the greedy algorithm is an appealing solution procedure
due to its simplicity and flexibility. Therefore, we now use a simulation study to
investigate the performance of the greedy algorithm for a multiple crane model
with discharging job sequences. Based on this analysis, we, then, refine the greedy
algorithm so as to improve its performance for the multiple crane model. Due to the
symmetricity between the greedy algorithm and a discharging job sequence, and
the reversed greedy algorithm and an uploading job sequence, as observed in the
previous section, the performance of the reversed greedy algorithm for a multiple
crane model with uploading job sequences will be similar.

In what follows, we first describe the design of our computational experiments
and then discuss our findings.

4.1 Design of the computational experiments

Our objective in this section is to evaluate the performance of the greedy algorithm
for the multiple crane vehicle dispatching problem with discharging job sequences.
For this purpose, we compare the makespan obtained by the greedy algorithm with
that of the optimal makespan, obtained by solving a Mixed Integer Program (MIP);
the MIP formulation is given in Bish et. al [1]. However, it takes the MIP on the
order of a couple of hours on a Sun Sparc 10 workstation to find the optimal solution,
even for small sized problems consisting of only 4 vehicles, 2 cranes, and 20 jobs
on each crane. Thus, it is not a practical approach for actual dispatching purposes,
especially when problems with 500-2500 containers are common in practice.

For this reason, we limit our computational analysis to cases with only 4 vehi-
cles, 2 cranes, each with a job list of 8− 12 jobs, and solve 200 such problems. For
each job, we generate a traveling time between the ship area and the job’s location
based on a uniform distribution in the range of 1 to 17 min. We assume that it takes
a crane 2 minutes to lift a container from the ship (or the vehicle), and it takes 1
minute to place (pick) the container on (from) the vehicle (observe that letting the
first time component to zero reduces the formulation to the model addressed in the
previous sections). Thus, a vehicle needs to be available by a crane only during the
last minute of job discharging/uploading.
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Table 2 summarizes the percent deviation of the makespan obtained by the
greedy algorithm from the optimal makespan over the 200 problems: for each
range of deviations, we report the number of problem instances with deviation in
that range. Table 2 shows that the greedy algorithm performs reasonably well in
most cases (in almost 80% of the instances, the deviation from the optimal solution
is less than 10% ), with an average deviation of 7% from the optimal solution.
The next question is whether the performance of the greedy algorithm could fur-
ther be enhanced by small refinements that are not computationally expensive to
implement. This is discussed in the next section.

Table 2. Percent deviation of the heuristic makespan from optimality

% deviation < 1% 1-3 % 3-5 % 5-10 % > 10%
from optimality
# of instances 3 26 38 88 45
in this range
(out of 200)

Average deviation = 7%

4.2 A refined greedy algorithm

Clearly, the main reason for the poor performance of the greedy algorithm is its
“myopic” nature. To overcome its “myopic” nature, we propose an enhancement
to the greedy algorithm, and include a simple look-ahead rule, described below.

Let Ji,j , i = 1, 2, and j = 1, 2, ..., denote the jth job in the sequence of crane
i. In what follows, we represent each job in terms of its traveling time (between
the ship area and its location). Let li be the number of jobs in the job list of crane
i. Given a fixed p ≤ li, we assign a weight wi,j =

∑min{j+p,li}
k=j Ji,k to each job

Ji,j , for j = 1, . . . , li. Thus, the weight of each job represents the minimum time
required to complete the remaining jobs on crane i’s list, which excludes crane and
queuing times. When a vehicle arrives at the ship area, it determines the job(s) that
are available at the earliest time for pick-up (which is determined by the earliest
available time of the corresponding crane). If there is only one such job, then it
selects that job for pick-up (as in the greedy algorithm). If, on the other hand, there
are multiple jobs available at the same time, then the vehicle selects the job with
the maximum weight. Thus, in the latter case, the vehicle will give higher priority
to the job with a longer traveling time, or to the crane job sequence with a longer
time for the remaining jobs.

Finally, we further modify the greedy algorithm by the following enhancement:
When there are a certain number, x, of jobs left in the system, we perform an explicit
enumeration to determine the best schedule for these remaining jobs. Clearly, x
should be a very small number. Presumably, this last enhancement is not as effective
for reasonably long job sequences. To confirm this, we tested a few examples with
20 jobs. It was found that this refinement “enhanced” efficiency by at most 0.3%
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in those examples. (The main reason for us to use such an additional enhancement
is to remove the “ending” effect which may arise in small-sized problems.)

Next, we tested the performance of the refined greedy algorithm on the same
set of 200 problem instances (with p = 8, x = 4). The results show that the
refined greedy algorithm generated near-optimal solutions for most instances, with
an average deviation from optimality of 1.55%, and a standard deviation of 2.61%.
The result is summarized in Table 3, shows the distribution of this deviation for
the refined greedy algorithm. As can be seen from the table, the refined greedy
algorithm performs much better than the greedy algorithm.

Table 3. Percent deviation of the heuristic makespan from optimality

% deviation < 1% 1-3 % 3-5 % 5-10 % > 10%
from optimality
# of instances 22 95 40 43 0
in this range
(out of 200)

Average deviation = 1.55%, standard deviation = 2.61%.

5 Conclusions and future research directions

Our goal in this research is to come up with simple, easily implementable vehicle
dispatching policies that generate good makespan values for the vehicle dispatching
problem.

The greedy algorithm is an appealing solution due to its simplicity and flex-
ibility. Therefore, in this analysis, we considered the greedy algorithm, together
with the reversed greedy algorithm, the combined algorithm and the combined
greedy algorithm, all of which are based on the greedy algorithm. By consider-
ing a single-ship/single-crane model, we were able to prove the optimality of the
greedy algorithm for a discharging job sequence, the optimality of the reversed
greedy algorithm for an uploading job sequence, the asymptotic optimality of the
combined algorithm together with the optimality of the combined greedy algorithm
for a combined job sequence. Based on these results, we, then, analyzed a more
general problem of a single ship with multiple cranes, and tested the performance of
the greedy algorithm for this problem through computational analysis. The results
show that, although not optimal, the greedy algorithm performs reasonably well
for a multiple crane vehicle dispatching problem with discharging job sequences.
We further enhanced the performance of the greedy algorithm by including a look-
ahead type of rule, which we refer to as the refined greedy algorithm. Computational
analysis reveals that the performance of the refined greedy algorithm is very sat-
isfactory: an average deviation of 1.55% deviation from the optimal solution over
all problems tested.
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We must note, however, that this research is only a start to analyze the operational
issues in container terminals, and there are still many open issues that need to be
analyzed.

In practice, other issues need to be incorporated into the analysis and addressed
by the algorithms. One important issue is how to determine a storage location
for each discharged container. In the model considered here, the storage location
of each discharged container is assumed to be given. This problem, where the
location of each discharged container is also a decision variable, has been analyzed
in [3] and [4]. Another issue would be identifying routes for each vehicle so as
to avoid congestion. There is also the issue of coordinating yard crane work load,
etc. Yet another important research direction would be to extend this analysis to a
multiple ship model. This direction has been studied in several recent papers; see, for
instance, Bish [2] and Kim and Bae [9]. Bish [2] considers the vehicle dispatching
and container location problem for a multi-ship multi-crane model, develops a
heuristic algorithm, which assigns locations to containers based on a transshipment
problem and dispatches vehicles to jobs based on a modified version of the greedy
algorithm, and analyzes the effectiveness of the heuristic from both worst-case
and computational points of view. Her results suggest that a modified version of the
greedy algorithm works very well in a multi-ship setting as well. However, analytical
results are presented only for a two-ship model and need to be extended to consider
any number of ships. On the other hand, Kim and Bae [9] develop a mathematical
programming formulation for a multi-ship multi-crane model, suggest a heuristic
algorithm, and analyze its performance through a numerical study. We believe that
this line of work needs to be extended to analytically characterize the effectiveness
of simple heuristics, such as modified versions of the greedy algorithm discussed
in this paper, in the context of a multi-ship model.

Although we considered a simplified model in this research, the insights gained
in this paper proved to be helpful in analyzing more complex situations at terminal
ports.

Appendix: Proof of Theorem 2

Consider any job sequence consisting of jobs {J1, J2, · · · , Jn}. For dispatching
policy π, we refer to the time a vehicle is assigned to Ji, i = 1, 2, · · · , n, as
the start time of Ji, and denote it as STi(π). Similarly, we refer to the time Ji,
i = 1, 2, · · · , n, is completed under that policy as the completion time of Ji, and
denote it as CTi(π).

Thus, in a J− job sequence, the start time of a “–” job is the time the crane
starts the task of discharging the job to a vehicle, and the completion time of a “–”
job is the time the vehicle returns to the ship area after carrying the discharged job
to its location in the yard. In a J+ job sequence, the start time of a “+” job is the
time a vehicle is dispatched to the job’s location to bring the job to the ship, and
the completion time of a “+” job is the time the quay crane finishes loading the job
onto the ship. We will omit the policy parameter and use STi and CTi, when the
policy is obvious from the context or when a specific property must hold for all
policies.
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As stated before, job precedence constraints for a J− : {J1, J2, · · · , Jn} job
sequence imply that

STi ≥ STi−1 + s i = 2, · · · , n,

whereas, for a J+ : {J1, J2, · · · , Jn} job sequence we must have

CTi ≥ CTi−1 + s i = 2, · · · , n.

To prove the Theorem, we need the following lemma.

Lemma 4 Consider a dispatching policy π+ applied to a “+” job sequence J+,
with a makespan of Z(π+). There exists a dispatching policy π− applied to the
reversed job sequence JR

− associated with J+ that achieves the same makespan,
i.e., Z(π−) = Z(π+).

Proof. Consider a “+” job sequence J+ : {J1, J2, · · · , Jn}, and a dispatching
policy π+. We let Vl : {Jl1 , Jl2 , · · · , Jlfl

} denote the job sequence assigned to
vehicle l, l = 1, 2, · · · , k, under this dispatching policy. The precedence constraints
for this J+ job sequence imply that job i, i = 2, · · · , n, cannot be completed until
all its predecessors in J+, i.e., jobs J1, J2, · · · , Ji−1, are completed. Hence, we
have

CTi(π+) ≥ CTi−1(π+) + s i = 2, · · · , n. (1)

Clearly, the makespan for this dispatching policy is Z(π+) = CTn(π+).
Now consider the corresponding reversed “–” job sequence, JR

− :
{Jn, Jn−1, · · · , J2, J1}. Our objective is to find a dispatching policy π− for the
reversed job sequence with a makespan of Z(π−) such that Z(π−) = Z(π+).

For this purpose, consider the dispatching policy π− obtained as follows. Re-
verse the job sequence Vl, l = 1, 2, · · · , k, defined as above, and denote the resulting
sequence as V R

l : {Jlfl
, Jlfl−1 , · · · , Jl1}. Under this policy, vehicle l starts with

job Jlfl
, continues with job Jlfl

−1, and so on. Start job Jn, a “–” job now, at time
Z(π+) − CTn(π+) = 0, job Jn−1 at Z(π+) − CTn−1(π+), · · ·, and job J1 at
Z(π+) − CT1(π+).

Now, if we can show that the schedule obtained by dispatching policy π−
satisfies (i) the precedence constraints for the JR

− job sequence, and (ii) vehicle
capacity constraints, then we have a dispatching policy for which

Z(π−) = Z(π+) − CT1(π+) + 2d1 + s = Z(π+)

and we are done.
Consider jobs Ji−1 and Ji, i = 2, · · · , n. Under dispatching policy π−, we

have:

STi−1(π−) − STi(π−) = Z(π+) − CTi−1(π+) − Z(π+) + CTi(π+)
= CTi(π+) − CTi−1(π+) ≥ s, from Equation ( 1)

and hence the precedence constraints for the JR
− job sequence are satisfied.

Next, we have to show that the schedule obtained by dispatching policy π− also
satisfies the vehicle capacity constraints. Vehicle l, l = 1, 2, · · · , k, can serve jobs
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{Jlfl
, Jlfl

−1, · · · , Jl1} under dispatching policy π−, since for jobs Jlh−1 and Jlh ,
h = 2, · · · , fl, we have the following:

STlh−1(π−) − STlh(π−) = Z(π+) − CTlh−1(π+) − Z(π+) + CTlh(π+)
= CTlh(π+) − CTlh−1(π+) ≥ 2dlh + s,

indicating that vehicle capacity constraints are satisfied. Hence, dispatching policy
π− generates a feasible schedule for the JR

− job sequence with a makespan of
Z(π+). This completes the proof.

Lemma 4 leads to the following corollary:

Corollary 5 Consider a dispatching policy π− applied to a job sequence J−, with
a makespan of Z(π−). There exists a dispatching policy π+ for the reversed “+”
job sequence associated with J− such that it achieves exactly the same makespan,
i.e., Z(π+) = Z(π−).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let π∗
+ be the optimal dispatching policy for a J+ job sequence,

with a makespan of Z(π∗
+). By Lemma 4, we can find a dispatching policy π− for

the corresponding reversed “–” job sequence JR
− such that Z(π−) = Z(π∗

+).
Now consider the optimal dispatching policy π∗

− for this JR
− job sequence with

a makespan of Z(π∗
−). By Corollary 5, we can find a dispatching policy π+ for the

corresponding reversed “+” job sequence J+, which is the original J+ job sequence,
such that Z(π∗

−) = Z(π+).
By the optimality of Z(π∗

−) for the JR
− job sequence, we have:

Z(π∗
+) = Z(π−) ≥ Z(π∗

−) = Z(π+) (2)

On the other hand, the optimality of Z(π∗
+) for the J+ job sequence implies

that

Z(π∗
+) ≤ Z(π+),

and hence, Equation (2) holds as equality. That is,

Z(π∗
+) = Z(π∗

−) (3)

Finally, Theorem 1 tells us that the greedy algorithm is an optimal dispatching
policy for the JR

− job sequence. Thus, given a J+ job sequence, we can obtain the
reversed job sequence JR

− associated with J+ and find the optimal schedule for this
JR

− job sequence by applying the greedy algorithm. Given the optimal schedule for
the JR

− job sequence, we can construct a schedule for the original J+ job sequence
as done in the proof of Lemma 4. That is, we can do that by reversing the sequence
of jobs assigned to each vehicle. Furthermore, this must be (one of) the optimal
schedule(s) for the J+ job sequence, since Z(π∗

−) = Z(π∗
+) by Equation( 3).

Observing that this is the reversed greedy algorithm completes the proof.
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Inventory-based dispatching of automated
guided vehicles on container terminals

Abstract This paper deals with automated guided vehicles (AGVs) which
transport containers between the quay and the stack on automated container
terminals. The focus is on the assignment of transportation jobs to AGVs within a
terminal control system operating in real time. First, we describe a rather common
problem formulation based on due times for the jobs and solve this problem both
with a greedy priority rule based heuristic and with an exact algorithm.
Subsequently, we present an alternative formulation of the assignment problem,
which does not include due times. This formulation is based on a rough analogy to
inventory management and is solved using an exact algorithm. The idea behind this
alternative formulation is to avoid estimates of driving times, completion times,
due times, and tardiness because such estimates are often highly unreliable in
practice and do not allow for accurate planning. By means of simulation, we then
analyze the different approaches. We show that the inventory-based model leads to
better productivity on the terminal than the due-time-based formulation.
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1 Introduction

In various regions of the world, double-digit growth rates in container handling
have been common during the last years and, hence, a substantial number of
container vessels is built each year. In addition, new vessels are often larger than
older ones—currently, modern vessels can carry more than 9,000 standard
containers (20-foot equivalent unit, TEU), and even larger ships are already
planned. Thus, the capacity of the worldwide container vessel fleet increases year
by year. This development puts pressure on container terminal operators to enlarge
terminal capacities to avoid congestion in ports. As a consequence, more container
terminals are built, and existing ones are expanded. For reasons of efficiency and
stacking density, new and extended terminal facilities increasingly make use of
automated equipment. This leads to the necessity of complex terminal control
systems which allow for an optimized utilization of the automated resources.

Due to its practical relevance, container terminal logistics has been a prominent
field of research. A comprehensive-literature survey has recently been given by
Steenken et al. (2004). Further overviews have been provided by Meersmans and
Dekker (2001), Vis and de Koster (2003), as well as Vis (2006). Important
optimization problems include berth planning (see Guan and Cheung 2004; Imai et
al. 1997, 2001; Lim 1998; Park and Kim 2003), quay crane planning (see Daganzo
1989; Peterkofsky and Daganzo 1990), and straddle carrier scheduling (see Böse et
al. 2000; Kim and Kim 1999b; Steenken et al. 1993). Moreover, approaches for
locating containers in the yard have been developed (see de Castilho and Daganzo
1993; Kim and Kim 1999a; Kim et al. 2000; Taleb-Ibrahimi et al. 1993; Zhang et
al. 2001).

Several papers have studied specific optimization problems arising in container
terminals with automated equipment. Automated guided vehicles (AGVs) have
been studied by Bae and Kim (2000). Bish et al. (2005) propose a greedy
dispatching method for AGVs. Grunow et al. (2004) consider double load AGVs,
that is, AGVs that can carry two 20-ft containers at a time. A general model for
scheduling equipment such as AGVs or automated stacking cranes (or non-
automated resources such as straddle carriers and reefer mechanics) has been
proposed by Hartmann (2004). Meersmans and Wagelmans (2001) discuss an
integrated scheduling approach for automated stacking cranes and AGVs. A
simulation study to compare AGVs and automated shuttle carriers has been given
by Vis and Harika (2004). Kim et al. (2001) employ simulation to provide a test bed
for the control system of an automated container terminal. There are numerous
papers in which resource allocation/dispatching rules have been applied in different
manufacturing settings. For the sake of brevity, we do not go into details in this
paper and refer the reader to, e.g., Hwang and Kim (1998), de Koster et al. (2004)
and Vis (2006).

In this paper, we focus on highly automated terminals which employ AGVs.
This study has been carried out in cooperation with the HHLA Container Terminal
Altenwerder in Hamburg, Germany [for details on this terminal, see Baker (1999)].
We consider a container terminal configuration similar to the Altenwerder terminal
that employs quay cranes, AGVs, and automated stacking cranes. Quay cranes are
used to discharge containers from and load containers onto vessels. AGVs are
means for horizontal transport of containers between the stacking area and the
quay, and they are unable to load or unload themselves. The yard is organized in a
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number of stacks, and each stack (or yard block) is served by one or more stacking
cranes. The terminal layout considered throughout this paper is displayed in Fig. 1.
In this paper, we only deal with the waterside, that is, containers arriving by a
vessel which have to be brought to the stacking area and containers being picked up
by a vessel which have to be brought from the stack to the quay (the landside with
its outside truck and rail operations is not considered, hence, it is not shown in
Fig. 1).

The goal of the paper is to present a method for assigning AGVs to
transportation jobs that is applicable to real-world container terminals. Therefore,
the main requirements for the method are high waterside productivity, very short

Fig. 1 Layout of the container terminal
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computation times, and robustness. High productivity means that the number of
container transported per hour should be as high as possible. Short computation
times are necessary to allow for real-time application within a terminal control
system. Robustness means that the method should perform well in a rather
unpredictable environment (which is typical in practice due to quay crane delays,
inaccurate estimates for AGV travel times, manual interference, etc.).

The outline of the paper is as follows. We first describe a rather conventional
approach to the AGV assignment problem, which is based on due times and an
earliness–tardiness objective. This formulation will be solved both by a greedy
heuristic [such simple methods are often used in practice and are also discussed in
the scientific literature; see Bish et al. (2005)] and an optimal algorithm.
Subsequently, we propose a new approach to the AGV assignment, which
introduces the idea of inventory related to quay cranes. The motivation for this is to
provide a problem formulation that avoids to employ time estimates as the latter are
typically inaccurate on real world terminals. Our goal is to define a method that is
more robust than a time-based one and, thus, leads to higher productivity. The
approaches are then compared in a simulation study. We first point out how much
the terminal productivity can be improved by using an optimal algorithm instead of
a simple heuristic in the conventional time-based formulation. Then, we indicate
the improvement that can be obtained from using the inventory-based formulation
instead of the time-based one.

2 General problem description

We consider the problem of assigning jobs to AGVs. Each job corresponds to the
transportation of a container from a pick-up location to a delivery location. An
AGV can be assigned one job (and, thus, a single container) at a time. After
completing a job, an AGV can start another job. A job consists of an empty drive
from its last position to the pick-up location, a hand-over time at the pick-up
location, a drive to the delivery location, and a hand-over time at the delivery
location. Two types of processes are distinguished, namely, discharging and
loading a vessel. For a job related to a discharging operation, the pick-up location is
a quay crane and the delivery location is a stack. Analogously, for a job related to a
loading operation, the pick-up location is a stack and the delivery location is a quay
crane. For each job, the locations are fixed (specific quay crane or specific stack).
Estimates of driving times between any two locations on the layout, as well as
estimates of the hand-over times are assumed to be given (if needed by the actual
solution approach).

Depending on the vessel’s stowage plan and operational strategies, some
container i may have to arrive at the quay crane before some container j when
loading a vessel. That is, there may be precedence relations between some (but
usually not all) of the jobs related to the same loading quay crane. There are no
precedence relations between discharging jobs.

The problem essentially consists of a number of AGVs and a number of jobs.
We consider n AGVs, namely, those which are currently available and those which
will soon complete their current job (note that this means we have a look-ahead in
the assignment process). For these AGVs, an estimated waiting time for availability
is given. Without discussing the details in this paper, it should be mentioned that
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determining the n AGVs to be considered is not based on a horizon but on
conditions related to certain events in the progress of the current job (only the
occurrence of these events allows for a relatively good estimation of the availability
time). Due to the problem-inherent rolling planning horizon, only the n most
urgent jobs are considered when computing for an assignment of jobs to AGVs.

The main goal when assigning jobs to AGVs is to maximize the waterside
productivity, that is, the number of containers handled per hour by the quay cranes.
This goal cannot be used directly as an objective function for the AGVassignment
problem. In fact, different objective functions can be defined to achieve the
productivity goal. Two such approaches will be discussed in the following sections.
In general, one may achieve high productivity by employing goals such as
minimization of the quay crane waiting times for AGV (when AGVs arrive too
late), minimization of the AGV waiting times at quay cranes (when AGVs arrive
too early), minimization of the empty travel times, and an even distribution of
AGVs among the quay cranes. (Note that the loaded travel times cannot be
influenced by assignment decisions because the pick-up and delivery locations of
each job are fixed.)

The AGV assignment problem is embedded into an overall terminal control
system. Whenever a certain event occurs, a new AGVassignment is calculated. The
main event is the completion of a job. Thus, frequent re-planning is done. If the
assignment procedure assigns a job to an AGV that is currently available, this
assignment is fixed and the AGV starts this job. Otherwise, if the assignment
procedure assigns a job to an AGV that is not yet available, the assignment is not
fixed. In the latter case, the job and the AGV will be considered again when the
assignment procedure is started after the next event. This way, the decision to
actually execute a job is made as late as possible. This allows for decisions based
on actual data, which is important as data are frequently changing in practice due to
delays, etc. In fact, frequent changes in the data and the inaccuracy of time
estimates (which are typical in practice) lead to a short planning horizon and to an
assignment problem in which an AGVobtains only one job (instead of a scheduling
problem with a sequence of jobs).

In Sections 3 and 4, we present two different formulations of the problem
setting described above. Both approaches have essentially the same structure as
they are both assignment problems with n jobs and n AGVs (i.e., each AGV must
be assigned exactly one job and vice versa) and with an objective to minimize the
total assignment costs. They differ only in the way of selecting the n jobs to be
assigned and in the definition of the costs cja; which evaluate the assignment of an
AGV a to a job j:

3 Due-time-based approach

3.1 Problem formulation

In this section, we provide a formulation of the AGV assignment problem that
makes use of due times for the jobs. This approach is similar to the formulation of
Hartmann (2004) and will be summarized briefly.
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Each quay crane is associated with a sequence of either loading or discharging
jobs. Considering the time the quay crane needs for loading or discharging one
container, we can define a due time dj for each job j: The due time reflects the time
at which an AGV should arrive at a quay crane either empty (discharging
operation) or with a container (loading operation). Note that a job always has a later
due time than all of its predecessors.

As AGVs are unable to load and unload themselves, they should arrive at the
quay cranes just in time. Early arrival implies that the quay crane is not yet ready
and that the AGV has to wait, which is a waste of AGV capacity. Late arrival means
that the quay crane has to wait for the AGV, which decreases its productivity. This
leads to a traditional earliness–tardiness objective function. Moreover, one may
wish to obtain short empty travel times (to save fuel costs and to save AGV
capacity for future jobs). Thus, our objective function minimizes the weighted sum
of earliness, tardiness and empty travel time.

For a more formal definition, let J be the set of the jobs to be assigned, and let
αE; αT ; and αe be the weights for earliness, tardiness, and empty travel time,
respectively. Moreover, let f qj be the estimated arrival time of job j at the quay
crane resulting from the assignment, and let eja denote the empty travel time of job
j when assigned to AGV a: Now the costs cja of assigning AGV a to job j are
defined as

cja ¼ αE � ðdj � f qj Þ þ αe � eja if f qj < dj
αT � ðf qj � djÞ þ αe � eja otherwise:

�
(1)

Note that the due time dj does not refer to the completion of the job but to the
arrival time f qj at the quay crane. In case of a discharging job, the latter corresponds
to the end of the drive to the pick-up location. Let us consider a discharging job j
with assigned AGV a and waiting time for availability wa of AGV a (we have
wa ¼ 0 if AGV s is currently available). Then, we obtain f qj ¼ wa þ eja for
discharging jobs. In case of a loading job, however, the due time refers to the end of
the drive to the delivery location. Let hSC be the estimated hand-over time at the
stacking crane, and let tja be the estimated transportation time from the pick-up to
the delivery location. Then, we have f qj ¼ wa þ eja þ hSC þ tja for loading jobs.

We consider n jobs and n AGVs for the assignment problem. As outlined in
Section 2, the n AGVs are those that are currently available and those which will
soon complete their current job. The n jobs are given as the n most urgent jobs that
are not yet in process, that is, the n jobs with the earliest due times among those
jobs that have not yet been started.

3.2 Solution methods

To solve the due time based assignment problem, we employ two procedures. Both
start by computing the set of jobs J and the set A of AGVs to be assigned, as
described in the previous subsection.
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The first approach is the Hungarian method of (Kuhn 1955) which is
implemented as described in (Munkres 1957). This algorithm leads to an optimal
assignment with respect to the due-time-based assignment costs given in Eq. 1.

The second approach is a simple greedy heuristic that will be used to provide
benchmark results for the comparison. We employ a priority rule-based procedure
similar to that of Hartmann (2004). The procedure repeatedly applies the following
steps until each job has been assigned to an AGV, that is, until J ¼ ; and A ¼ ;:

1. Select the job j to be assigned next as the most urgent job, that is, the job with
the smallest due time dj ¼ minfdi j i 2 Jg:

2. Select the AGV a that leads to the smallest increase in the objective function,
that is, the lowest possible costs cja ¼ minfcjb j b 2 Ag for job j:

3. Assign AGV a to job j:
4. Remove AGV a from A and job j from J ; respectively.

3.3 Implications for stacking-crane decisions

The AGV assignment problem decides which empty AGV carries out which job,
but it should not decide which container the AGV will actually receive. Consider
two empty AGVs a and b with waiting times for availability wa < wb. Moreover,
consider two jobs i and j with the same stack as pick-up location and with due
times di < dj. Let us assume that the AGVassigment decision was to assign job i to
AGV a and job j to AGV b . It may happen that AGV b arrives at the stack before a
(a may have been delayed due to congestion on the layout). Now the stacking
crane should put container i on AGV b because container i is more urgent (note
that one could say that AGVs a and b switch their jobs).

The stacking-crane decisions (i.e., which container is to be moved next) is
based on various goals and requirements such as high waterside and landside
productivity, short empty travel times, AGVs, short waiting times for external
trucks, etc. Considering the interface to the AGVs, we assume that the stacking
cranes make use of rules analogous to those employed for the AGVs when deciding
which AGV should receive which container. This means that the stacking cranes
prefer containers with earlier due times (in addition to their further goals). This
does not have an impact on the AGV assignment problem itself, but is important
when testing the AGVassignment approach in a simulation study as will be done in
Section 5.

4 Inventory-based approach

4.1 Basic idea

At each quay crane, there is a waiting buffer for AGVs, that is, an area in which
arriving AGVs have to wait until the quay crane is ready to serve them. This buffer
can be seen as a storage. In this analogy, the quay cranes are customers which have
to be supplied with goods. These goods correspond to AGVs. A loading quay crane
requires AGVs with containers to be loaded, while a discharging quay crane
requires empty AGVs on which a discharged container can be put. Like in
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inventory management, the task is to make sure that no customer has to wait for
goods, i.e., the inventory level should not be zero. On the other hand, the inventory
level should not be too high. In our case, the latter is especially important because
not only containers but also AGVs are tied up in stock. Hence, if queues become
too long, there is a negative effect on the system’s behavior because less
transportation capacity is available.

Considering the AGV buffer as an inventory, we say that the inventory level of
a quay crane is the number of AGVs in the buffer. Furthermore, the inventory level
plus those AGVs on their way to the quay crane’s buffer can be seen as the quay
crane’s net inventory level. To keep the analogy, we define a special net inventory
level for our problem. We consider Q quay cranes q ¼ 1; . . . ;Q: For each quay
crane q , the inventory level for assignment decisions ilaq is defined as the number
of AGVs that are busy with a job of a quay crane q and have not yet reached q:
Furthermore, we denote the set of AGVs belonging to ilaq as ILAq , that is, we have
ilaq ¼ jILAqj: Note that for a loading quay crane q; ILAq consists of the AGVs
that are either waiting in the buffer at q; transporting a container towards q;
waiting for a container for q at a stack, or driving to a stack where a container for q
is to be picked up. For a discharging quay crane p; ILAp contains those empty
AGVs that are either waiting in the buffer at p or driving towards p (observe that
AGVs transporting a container picked up at p do not belong to ILAp ).

Considering the analogy described above, the basic idea for assigning AGVs to
jobs can be stated as follows: Whenever an AGV a should get a new job, assign a
to the first unassigned job of the quay crane q whose buffer is most probably empty
when a would arrive at q: According to the analogy to inventory management, we
choose the quay crane q with the smallest ilaq: In other words, the next job of that
quay crane q for which ilaq is minimal is the most urgent job. One may also say
that quay crane q is the most urgent quay crane to receive an AGV. A methodology
to assign jobs to AGVs, which is based on this basic idea, will be presented in
Section 4.2.

There is another motivation for this idea: If we want to reduce waiting times of
AGVs at quay cranes, we have to shorten the waiting queues. By sending the AGV
to quay crane with lowest ilaq; we select the shortest expected waiting queue for
the AGV to queue into.

However, the inventory levels ilaq; as described above, are not yet suitable for
directly comparing the current needs of the quay cranes for further AGVs with each
other. Obviously, the time an AGV needs to arrive at the quay crane is much longer
for loading quay cranes than for discharging ones. In the former case, it includes
driving to the stacking crane, waiting for service, and driving to the quay crane,
while in the latter case there is just a direct drive to the quay crane. Naturally, to
reach the same supply level for all quay cranes (or, in other words, the same
productivity), the inventory level of loading quay cranes must be higher than that of
discharging ones. Therefore, we introduce a parameter φ called phase factor by
which the inventory level of loading quay cranes must be higher. We consider
adapted inventory levels for loading quay cranes q by defining ila′q ¼ ilaq=φ:
The inventory levels of discharging quay cranes are not modified, that is, we set
ila′p ¼ ilap for each discharging quay crane p: The urgency with which a quay
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crane requires an AGV is now measured by inventory levels ila′q for all quay
cranes q:

So far, we have defined a quay crane q with inventory level ila′q to be more
urgent than that of a quay crane p if we have ila′q < ila′p . Finally, we consider
quay cranes having the same inventory level, that is, ila′q ¼ ila′p: To resolve such a
tie, we define the quay crane for which the last AGV was started a longer time ago
to be more urgent.

Note that ila′q can further be modified to reflect operational issues in practice.
One might wish to prioritize some quay crane q; e.g., if q has the longest remaining
job list and must be accelerated to finish the vessel on time. This can be achieved
by reducing ila′q: This makes the jobs of quay crane q appear more urgent and,
thus, leads to more AGVs for quay crane q: This should provide a higher
productivity of q (although, of course, the productivity of the remaining quay
cranes may decrease). This example shows the straightforward applicability of the
inventory idea with respect to practical needs.

4.2 Assignment procedure

First, we determine all AGVs, say n , which are currently free or will be free within
a short time as described in Section 2. Next, we find n jobs to be assigned to those
available AGVs. At this point, we employ our basic idea as described in Section
4.1: The most urgent job is a job which belongs to the quay crane q; which has the
lowest inventory level ila′q: Among all those, we select a job all predecessors of
which are already assigned to an AGV, are in transport, or are finished. By paying
attention to the precedence relations when assigning AGVs to jobs, we reduce the
risk of AGV waiting times at a quay crane that are caused by delayed predecessor
containers. We then note the job just chosen as assigned, temporarily increase the
corresponding ila′q by one and, once again, determine the most urgent job based
on the new inventory levels. This process loops until we have n jobs.

To assign the n jobs to the n AGVs, we create a standard linear assignment
problem. The costs cja of assigning job j to AGV a consist of three components:

– An AGV a may have a current job that must be completed before it can start the
next empty travel. The estimated waiting time for availability wa obviously
influences the duration until the next job j can be started as well as the duration
until the AGV can arrive at the related quay crane. Note that wa is zero if AGV a
does not have a current job.

– According to the pick-up location of job j and the current position of AGV a,
there is an expected empty travel time eja if j is assigned to a. This empty travel
time affects the arrival of the AGV at the quay crane.

– We define 1 � oj � n as the ordinal number of job j according to the order in
which the jobs were chosen for assignment. That is, job j with oj ¼ 1 is the
most urgent job with respect to the inventory levels ila′q; job i with oi ¼ 2 is
the second most urgent job and so on. (Note that oj corresponds to the due time
dj in the due time based approach as both reflect the urgency of a job to receive
an AGV.)
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Now we define the cost as follows:

cja ¼ ðλ � ðn� ojÞ þ 1Þ � ðwa þ ejaÞ
The first part of the formula covers the job’s urgency (λ is a weight to adjust the
impact the job’s urgency has on the costs). The urgency value of the least urgent job
(ordinal number oj ¼ n) is 1: The next (more urgent) jobs have coefficients
1þ λ; 1þ 2 � λ; 1þ 3 � λ and so on. The second part of the formula reflects the
estimated time that will pass until the container related to job j would be picked up
if AGV a is assigned to job j . Multiplying both parts means that a very urgent job j
(i.e., with a low oj) and an AGV a that would need a long time to pick up the
container related to job j have high assignment costs cja:

Having determined the costs cja; we solve the resulting assignment problem by
the Hungarian method of (Kuhn 1955), designed as an executable in (Munkres
1957). This algorithm leads to an optimal assignment in terms of our objective to
minimize the total assignment cost.

4.3 Implications for stacking-crane decisions

As already discussed in Section 3.3, stacking cranes are involved in the decision of
which container to load on an AGV. Therefore, we describe a rule for loading
containers which is, analogously to the assignment rule, based on net inventory
levels.

We distinguish the loading decisions to be made when an AGV receives a
container from a stacking crane, and those to be made when the AGV receives a
container from a quay crane. In the latter case, the AGV simply receives an
arbitrary container from the quay crane it is waiting at. In the former case, this
decision is much more difficult: The stacking crane may have containers required
by different quay cranes, thus, it has to decide which to pick first. To support the
selection, we introduce a further inventory level. The inventory level for transport
decisions iltq of a loading quay crane q is defined as the number of AGVs driving
straight towards q after picking up a container for q at the stacking area.
Additionally, we define the corresponding set of AGVs as ILTq:

Then, we select the quay crane in a way similar to the assignment decision: We
assume (see Section 3.3) a stacking crane to consider the quay crane q with the
lowest iltq among all loading quay cranes having containers at the specific stacking
crane as the most urgent quay crane. Again, we want to respect the precedence
relations, namely only pick up containers whose predecessors are already picked
up. However, it is possible that none of the containers to be loaded fulfills this
precedence condition because we consider a subset of the containers. For example,
it might occur that each container has at least one predecessor not picked up yet
which stands at another stacking crane. Then, to prevent congestion as much as
possible, we propose to start with strong requirement formulations and lower them
step by step, if no container fulfills them. As soon as we find some containers, we
select the one belonging to the most urgent quay crane.
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Sending an AGV to a quay crane q with low iltq is motivated by reducing
waiting times of quay cranes and AGVs. This idea directly corresponds to the one
for selecting containers for the assignment process described in Section 4.2.

4.4 Enforcing dual cycles

An AGV’s drive to the pick-up location is often necessary but worth avoiding if
possible. It ties up the AGV capacity and, moreover, leads to more traffic in the
terminal so the risk of congestion increases. Therefore, we provide a feature to be
plugged into the decision process described so far.

A constellation of an AGV transporting a container to its destination and
receiving a new job with a pick-up location equal to the previous job’s delivery
location is called a dual cycle. Dual cycles are possible only at stacks where quay
cranes are either loading or discharging, which means they do not discharge a
container immediately after loading another one in the same ship bay.

The assignment process described above arranges dual cycles only if there is a
container with sufficient urgency at a stack where an available AGV is located. To
suppress more empty drives, we take into account containers stored at a stack
which would be ignored when creating the assignment problem in Section 4.2
because of a lack of urgency. Hence, we state an assignment rule as follows: If an
AGV is available at a stack, it is assigned to the most urgent job located at this
specific stack and whose predecessors already have been assigned or completed.
As a result, we might assign a container which would not be considered by the
basic method of Section 4.2 but offers a profitable dual cycle. This assignment
process is executed right before the basic assignment process in Section 4.2. The
jobs and AGVs assigned by this procedure are deleted from the corresponding sets.
For the remaining AGVs, the assignment problem is created, solved, and evaluated
as stated in Section 4.2.

Note that the AGV process in case of a dual cycle differs from the standard
process only in that the empty travel to the pick-up location is actually a dummy
drive-obviously, it takes no time because the last delivery location of the AGV
corresponds to its next pick-up location. Afterwards, we decide which container to
load on the AGV and select the most urgent one as described in Section 4.3.
Therefore, we always arrange a dual cycle for the most urgent container of the
specific stack (to be accurate, the AGV assignment procedure can only decide to
leave the empty AGV at that stack, but we assume that the stacking crane
scheduling selects the most urgent container with respect to the second inventory
level iltq ). Unfortunately, although this rule reduces empty travel times, it can also
lead to undesirable effects which can be resolved as follows:

– As outlined in Section 4.1, we aim at inventory levels as similar as possible. By
partially ignoring the urgency of jobs, we risk to disturb this balance. Therefore,
we introduce two parameters 0 � σ; τ � 1 to prevent the balance from getting
too much disturbed. Furthermore, we calculate the current minimum and
maximum inventory levels among all quay cranes, that is, ilaminall ¼ minfila′q j
q ¼ 1; . . . ;Qg and ilamaxall ¼ maxfila′q j q ¼ 1; . . . ;Qg: Analogously, the
current minimum and maximum inventory levels iltminloading and iltmaxloading among
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the loading quay cranes are calculated. We employ them to formulate two
conditions for a dual cycle concerning a specific candidate job j and its quay
crane’s qj inventory levels ila′qj and iltqj :

ila′qj � ð1� τÞ � ilaminall þ τ � ilamaxall (2)

iltqj � ð1� σÞ � iltminloading þ σ � iltmaxloading (3)

Following these conditions, we only choose a container for a dual cycle if it
belongs to one of the more urgent quay cranes.

– Dual cycles only support loading quay cranes by more efficient use of AGVs
(the AGV driving time for loading quay cranes is shortened on the average).
Moreover, the dual cycle approach assigns AGVs to loading quay cranes that
otherwise might have been assigned to discharging ones. Again, this disturbs the
balance between loading and discharging quay cranes. Hence, we have to adapt
the phase factor φ described in Section 4.1 to readjust that balance.

5 Simulation study

To compare and evaluate the two assignment approaches given in Sections 3 and 4,
we developed a simulation model. In the following, we give some details of the
simulation model, summarize the parameters employed, and, finally, discuss the
results.

5.1 Model

According to our problem setting, we identify three substantial material flow
components of the considered container terminal configuration (for a sketch of the
terminal layout in the simulation model, we refer again to Fig. 1).

– Quay cranes load containers onto a vessel or discharge them from it. We can
look at their life cycle as an endless loop of either waiting for AGVs or handling
containers. When a quay crane holds a container to set down on an AGVor waits
for a container to load on the vessel, it has to wait until an AGV arrives at the
quay crane. After a quay crane’s interaction with an AGV, it either transports the
container onto the vessel (if loading) or picks the next container from it (if
discharging). To characterize the quay crane’s behaviour, we employ three
distributions: hand-over time for AGVs to be loaded with discharged containers,
hand-over time to get containers from AGVs to load them on a vessel, and the
time the quay crane requires before it is ready for the next hand-over. The former
two contain the processes of picking the container and lifting it up to a height
that allows the AGV to leave (if loading) and putting the container down and
releasing it (if discharging), respectively. The latter includes the container’s
travel to or from the vessel.
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– Stacking cranes manage the stacking area and, therefore, receive containers from
AGVs after they were discharged from vessels. Additionally, stacking cranes
provide containers for AGVs to be loaded onto vessels. Both processes are
modeled by distributions for the transfer times, that is, the times the AGVs have
to wait at the stacks. As the behaviour of the stacking cranes is not modelled
explicitly, these distributions implicitly contain all other activities such as
shuffling containers and serving the landside.

– AGVs transport containers from quay cranes to the stacking area and vice versa.
Their only activity to be modeled is driving. Therefore, a distribution for the
driving time from each possible starting position to each possible destination
position is registered in the model. These distributions cover interferences of
AGVs on the layout, especially congestion. Moreover, for hand-over at the quay
cranes and stacking cranes, an estimated availability time for an AGV is
generated. Both the time at which the estimate is generated in advance and the
error of the estimate (i.e., deviation from actual availability time) are controlled
by distributions.

The simulation model has been implemented in Desmo-J, a discrete event-
based simulation framework in Java (see Page et al. (2000)). A more detailed
presentation of the simulation model can be found in Briskorn and Hartmann
(2006).

5.2 Experimental design

To evaluate our approach, we compare four different methods to assign jobs to
AGVs. First, we implemented the greedy heuristic described in Section 3, which
we will refer to as “dueTimePrio.” Our own approach, which was described in
Section 4, was realized both with (“invDualCycle”) and without forcing dual
cycles (“inv”). Because we want to get results concerning the different methods to
select containers for assignment, namely, the due-time-based rule and the
inventory-based idea, we have to eliminate effects caused by different assignment
methods. We achieve this by using the Hungarian method for assigning containers
selected by the due-time idea in a fourth method, “dueTimeHung.”

We apply these approaches to scenarios that differ by the structure of the
containers’ precedence relations. Varying this structure gives a hint about the
capability of an approach because the structure defines the degrees of freedom
which are left for it. Obviously, precedence relations between containers i and j
can solely exist if i and j belong to the same quay crane. We considered five
structures of precedence relations:

– The lowest requirement level is given in a scenario without precedence relations.
The approaches can randomly choose containers to load or discharge when
available.

– The strongest requirement level is given by “linear” precedence relations
between the containers of each quay crane. Then, at each point of time there is
just a single container for each quay crane, which can be loaded or discharged.
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– In addition, we have three settings with partial precedence relations. They are
different with respect to the number of precedence relations per job, leading to
scenarios with “many,” “medium,” and “few” precedence relations per job.

In each scenario there are 20 stacking cranes and 40 AGVs. Ten quay cranes, of
which five are loading and five are discharging, are randomly distributed on the 20
possible positions. We created 60 jobs per hour and quay crane. Note that this
roughly corresponds to the maximum technical productivity of a quay crane. This
way, the actual throughput results from the AGV dispatching strategy under
consideration. The distributions for the material flow behavior mentioned in
Section 5.1 were taken from statistics of the Container Terminal Altenwerder. The
original statistics were modified for reasons of confidentiality, but the resulting
distributions still allow for a realistic simulation.

For the simulation runs, we identify four goals resulting from the discussion in
Section 2. We use them to compare the approaches:

– Increasing the container terminal’s waterside productivity, i.e., the number of
containers loaded onto and discharged from vessels per hour, is the main goal of
our approach.

– Waiting times of quay cranes increase the time of the vessels in port. Hence, we
want to reduce them.

– Waiting times of AGVs tie up capacity without having any positive effect on the
system’s productivity, so we want to reduce them.

– Empty travel times should be shortened because, like waiting times, they tie up
capacity without supporting the main goal. Besides, they increase traffic on the
AGV layout and, therefore, the probability of congestion.

We carried out two series of simulation runs. In preliminary experiments, we
tested a broad variety of values for each parameter while fixing others. After
evaluating these runs, we fixed all parameters to their best settings for further
experiments. Tables 1 and 2 give the fixed values of essential parameters. Note that
phase factor φ has to be adapted according to Section 4.4 when dual cycles are
forced.

For each approach, we performed 100 simulation runs with a simulation time of
11 h per run, which were preceded by 2 h to get the system in balance and followed
by 2 h to make sure containers were not running out in the period to be evaluated.
Solely, the period of 11 h is evaluated by means of statistics.

Table 1 Parameters for due time approach

Parameter Symbol Value

Earliness weight �E 1
Tardiness weight �T 7.5
Empty driving weight �e 1
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5.3 Comparison of the approaches

In the following, we present the results of the simulation runs, taking into account
our four approaches and five different scenarios.

Table 3 gives an overview of the productivity resulting from the different
approaches. The productivity is measured as the average number of containers
loaded or discharged per hour and quay crane. Although we used neither the
original approach employed at the Container Terminal Altenwerder nor the original
statistics, we cannot give absolute productivity figures in this paper to avoid
misinterpretations. Therefore, the results are given as relative figures. We selected
“dueTimePrio,” the simplest method in our study, as a base and set its productivity
index to 1.0 for each of the five scenarios. The productivity resulting from the other
methods are given relative to those of “dueTimePrio” (e.g., 1.015 of
“dueTimeHung” for the “medium” scenario indicates a productivity improvement
of 1.5% over “dueTimePrio”).

One can observe that productivity using “dueTimeHung” is slightly higher in
each scenario than when “dueTimePrio” is applied. Remember that these
approaches only differ in the algorithm, not in how the most urgent jobs are
determined or how job assignments are evaluated. The results show that the
Hungarian method is better suited than the greedy heuristic, although the
productivity is increased only by 1.0–1.8%. Furthermore, “inv” reaches a higher
productivity than “dueTimeHung”. These two approaches make use of the same
algorithm (i.e., the Hungarian method) but employ different problem formulations.
Therefore, we can say that the inventory-based concept is more promising than the
due-date approach. In particular, we can see that the improvement due to the
inventory concept is higher than the improvement that can be obtained from using
an optimal algorithm in the due-time-based model. When comparing “inv” and
“invDualCycle”, we observe that using the option to enforce dual cycles in the
inventory-based approach seems to be extremely promising. Also, note that the

Table 2 Parameters for inventory approach

Parameter Symbol Value

Phase factor � 1.6
Cost step � 3
Dual cycle � 1
Dual cycle � 0.5

Table 3 Quay crane productivity

Precedence relations dueTimePrio dueTimeHung Inv invDualCycle

Linear 1 1.010 1.050 1.049
Many 1 1.014 1.046 1.059
Medium 1 1.015 1.045 1.183
Few 1 1.014 1.075 1.229
Without 1 1.018 1.047 1.190
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superiority of the dual cycle approach further increases, if there are less precedence
relations.

Table 4 gives an impression of the influence the approaches have on the total
empty travel time of AGVs. Again, the Hungarian method in “dueTimeHung” is
superior to the simple priority rule in “dueTimePrio”. The inventory-based
approach leads to smaller empty travel times than the due-time-based approach.
Obviously, enforcing dual cycles strongly reduces empty driving times. The effect
of dual cycles on the empty travel times increases with decreasing number of
precedence relations. This is because less precedence relations make it more likely
to fulfill the conditions for arranging dual cycles on a higher requirement level (see
Section 4.3), which will reduce congestion in front of the quay crane.

Table 5 shows the waiting times of the AGVs in the buffer at the quay crane.
Recall that AGVs have to wait in this buffer, if more AGVs than the quay crane can
handle have been assigned to this quay crane, or if AGVs have to wait for delayed
predecessors. We can see that the inventory-based approach reduces waiting times
of AGVs significantly. If the dual cycle extension is considered, the waiting times
of the AGVs are higher than otherwise. The latter results from the drawback
discussed in Section 4.4: By enforcing dual cycles, we partially ignore the urgency
of containers. Therefore, it becomes more likely that we send AGVs to quay cranes
with higher ilaq: Hence, AGV queues get longer and waiting times in the buffer
increase.

The waiting times of the quay cranes are given in Table 6. Again, the inventory-
based idea leads to better results than the due-time approach. Enforcing dual cycles
reduces the quay crane waiting times even further.

5.4 Impact of the look-ahead

As described in Section 2, the assignment procedures consider the AGVs that are
currently free and those that will soon be available. This implies that we have a
certain look-ahead which gives us more degrees of freedom for finding good
assignments. On the other hand, considering AGVs that are not available yet means
that we have to take estimated availability times into account, and the quality of
such estimates is not so good in practice. Thus, to validate the look-ahead
approach, we compare it with a version without look-ahead that considers only
AGVs that are currently available.

The results can be found in Table 7. We compare the inventory-based approach
with and without look-ahead and report relative productivity (with the version
without look-ahead being the base). The version with look-ahead leads to 10%

Table 4 Empty travel times of AGVs

Precedence relations dueTimePrio dueTimeHung Inv invDualCycle

Linear 1 0.955 0.906 0.876
Many 1 0.951 0.906 0.814
Medium 1 0.943 0.924 0.580
Few 1 0.952 0.914 0.559
Without 1 0.950 0.919 0.529
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higher productivity. This confirms that having more degrees of freedom for
optimization is more important than the often low quality of the availability time
estimates.

Finally, it should be mentioned that the inventory approach with look-ahead
considers 4.6 AGVs on average when executing the assignment procedure. In the
version without look-ahead, however, usually only one AGV is considered in cases
of high workload (which are simulated in this case and which are most important in
practice). This is because the assignment procedure is executed whenever an AGV
has completed its last job (cf Section 2). In case of high workload, all other AGVs
are busy, hence, that AGV is the only one free when the assignment procedure is
executed.

5.5 Impact of precedence relations

Finally, we have a brief look at the impact of the precedence relations on the
productivity, empty travel times, waiting times of AGVs in the quay crane buffer,
and quay crane (QC) waiting times for AGVs. The results are displayed in Table 8.
We consider only the greedy priority-rule-based heuristic for the due date approach
(dueTimePrio), which has been the benchmark in our study. As in the previous
tables, we give relative results. Here, we have selected the linear precedence
relations as a basis for the comparison.

We observe a significant influence of the precedence relations’ density on the
results. In particular, having less precedence relations leads to higher productivity.
If we have no precedence relations at all, the productivity (with the same heuristic)
is 11.8% higher compared to the case of linear precedence relations. This is because
less precedence relations make it less likely that an AGV has to wait for a delayed
predecessor in the buffer at a loading quay crane. This is confirmed by Table 8,

Table 5 AGV waiting times in buffer at quay crane

Precedence relations dueTimePrio dueTimeHung inv invDualCycle

Linear 1 1.032 0.860 0.944
Many 1 1.027 0.881 1.036
Medium 1 1.075 0.666 0.696
Few 1 1.039 0.911 0.964
Without 1 1.007 0.601 1.052

Table 6 Quay crane waiting times for AGVs

Precedence relations dueTimePrio dueTimeHung Inv invDualCycle

Linear 1 1.032 0.860 0.944
Many 1 0.990 0.974 0.955
Medium 1 0.982 0.957 0.800
Few 1 0.990 0.962 0.837
Without 1 0.987 0.977 0.838
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which shows that the AGV waiting times in the quay crane buffer decrease
drastically when we have less precedence relations.

5.6 Computation times

We close this section with a brief look at the times required to compute one
assignment. In both the due time and the inventory approach, the average
computation time for one execution of the Hungarian method has been below 0.001
s. The maximum computation time for one execution has been 0.016 s. The
experiments were carried out on an Athlon XP 2200+ computer with 512 MB
RAM. These computation times show that the approaches presented in this paper
are well suited for application in a terminal control system, which requires
decisions in real time.

6 Conclusions and outlook

In this paper, we proposed an approach to schedule container transports between
quay cranes and the stacking area. We captured the problem of assigning
transportation jobs to AGVs by introducing a concept related to inventory
management. The essential idea is to assign an AGV to a job that belongs to a quay
crane to which a relatively small number of AGVs is currently assigned. This
problem formulation was compared to a more traditional formulation that is based
on due times for the jobs and an earliness–tardiness objective. Both formulations
differ only in how the jobs to be considered are determined and in the way the
assignment costs of jobs to AGVs are calculated, but not in the underlying
mathematical structure.

Table 7 Impact of look-ahead on productivity (method: inv)

Precedence relations Only free AGVs Free and soon available AGVs

Linear 1 1.090
Many 1 1.097
Medium 1 1.099
Few 1 1.095
Without 1 1.107

Table 8 Impact of precedence relations (method: dueTimePrio)

Precedence relations Productivity Empty travel AGV waiting QC waiting

Linear 1 1 1 1
Many 1.035 1.000 0.744 0.982
Medium 1.065 0.981 0.370 0.973
Few 1.071 0.993 0.256 0.964
Without 1.118 0.989 0.242 0.943
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In a simulation study, we found that the problem formulation has an impact on
the resulting terminal productivity. Even when both problem formulations are
solved with the same algorithm (the well-known Hungarian method), the
inventory-based concept outperformed the due-time-based approach with respect
to waterside productivity (although only by a few percent). At first glance, the due-
time approach seems to allow for more precise scheduling because it accurately
plans events and durations on the terminal. However, our results indicate that the
bad time estimates, which are common in practice (and which were considered in
our simulation model in a realistic way), lead to suboptimal decisions in the due-
time approach and, thus, to lower productivity. The inventory-based approach
avoids the use of estimated times to a large extent. Hence, it appears to be more
robust and, thus, better suited for application in practice. Besides, it leads to a
simpler terminal control system because frequent updates of times are not
necessary.

Additionally, we introduced a feature to enforce dual cycles of AGVs at stacks
(that is, a stacking crane unloads a container from the AGVand puts another on the
AGV). This allows reduction of the empty travel times of the AGVs and, as shown
by our results, leads to higher waterside productivity.

Furthermore, we analyzed the impact of the precedence relations both on the
productivity and on the performance of the different approaches. Less precedence
relations between containers to be loaded onto vessels lead to higher productivity.
This is due to more degrees of freedom for the AGVs, that is, in case of fewer
precedence relations, AGVs can directly proceed to the quay crane without having
to wait for a delayed predecessor to pass. Moreover, the additional productivity
gain of the dual cycle extension increased with a decreasing number of precedence
relations.

Considering the good results of the inventory-based concept for AGV
dispatching, an objective of further research should be the application of this
approach to other types of equipment for container handling. In particular,
inventory-based optimization would be promising for stacking cranes and straddle
carriers. In both cases, the inventory idea would have to be adapted to reflect the
specific requirements of those types of equipment.
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Deadlock handling for real-time control
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Abstract In automated container terminals, situations occur where quay cranes,
stacking cranes, and automated guided vehicles (AGVs), directly or indirectly
request each other to start a specific process. Hence, all of the affected resources are
blocked, possibly leading to the complete deadlock of individual cranes or AGVs.
Particularly, AGVs are liable to deadlocks because they always need a secondary
resource, either a quay crane or a stacking crane, to perform the pick-up and drop-
off operations. Because usually no buffering of containers takes place at the
interfaces between AGVs and cranes, the consequences of deadlocks are rather
severe. Two different methods for the detection of deadlocks are presented. One is
based on a matrix representation of the terminal system. The other directly traces
the requests for the individual resources. To resolve deadlock situations arising in
an automated container terminal, three different procedures are proposed. These
procedures aim to modify the sequence of handling operations or to assign them to
alternative resources so that conflicts between concurrent processes are resolved.
The suitability of the concept is demonstrated in an extensive simulation study.
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1 Introduction

According to Kim et al. (1997), a deadlock can be defined as “a situation where one
or more concurrent processes in a system are blocked forever because the requests
for resources by the processes can never be satisfied”. Deadlocks result from
decentralized planning, which is the only realistic mode to govern large-scale
logistics systems with highly dynamic interactions and incomplete knowledge
about future events. To meet online requirements for logistics control of container
terminals, the decomposition of the entire logistics control system into various
modules for the different types or groups of resources is inevitable.

Whereas deadlocks in manufacturing systems have been investigated by many
researchers (see, e.g., Egbelu and Tanchoco 1984; Lim et al. 2003; de Koster et al.
2004; Le-Anh and de Koster 2005), deadlocks in highly automated seaport
container terminals have hardly gained attention until now. This paper focuses on
deadlocks occurring in automated seaport container terminals, where quay cranes
unload containers from vessels and place them on automated guided vehicles
(AGVs). Containers are then transported to the storage area where they are
collected by stacking cranes. For export containers, these operations are performed
in the reverse order (for a detailed description of the handling and transportation
processes in container terminals, cf. Steenken et al. 2004). Unlike the situation in
manufacturing systems, there is no buffer between the cranes and the AGVs, which
makes these container terminals susceptible to deadlocks. In this paper, we
alternatively consider terminal configurations with single-load and dual-load
AGVs. The latter vehicle type may transport up to two standard 20-ft containers at
a time.

Deadlocks usually occur in the execution phase of the logistics processes; for
instance, if a request is launched by the control system of a specific resource, e.g.,
an AGV, for another resource, e.g., a quay crane, which is scheduled to unload a
container from the AGV. However, because of the dynamic interactions within the
terminal, the random variations in the processing times, and the concurrency of a
large number of different processes, the quay crane may also request the same
AGV for loading another container onto that AGV. A typical deadlock situation as
shown in Fig. 1 occurs, when neither quay crane nor AGV can proceed with their
actual operation, especially because no buffers are available to decouple the
mutually dependent operations (note that in the example, both containers are 40-ft
containers, such that the AGV can carry only one of them at a time). Hence, in

Fig. 1 A typical deadlock situation in a container terminal
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automated seaport container terminals, the interactions between quay cranes,
stacking cranes, and AGVs has to be monitored carefully. These monitoring
systems include, as a major constituent, adequate deadlock handling procedures.

One major cause for a deadlock to arise is discrepancies between the schedules
of quay cranes, stacking cranes, and AGVs. In Fig. 2, the planning steps to get from
the stowage plan of a vessel to the AGV schedules are briefly summarized. Note
that the crane operation sequences for quay and stacking crane are determined
independently before the AGV schedule is determined and cannot be changed in
the course of the AGV dispatching. The AGV is merely considered a service device
with the aim to meet the target times resulting from quay and stacking crane
schedules. The entire procedure consists of the following steps:

1. Determination of the quay crane sequences: In the first step, for each quay crane
the sequence of the individual operations is derived from the stowage plan of
the vessel. In the example, quay crane Q2 has to perform first the pick-up of
container 3.

2. Determination of the quay crane schedules: The quay crane sequences are
converted into quay crane schedules in the next step, considering average
handling times (in the example, handling times of 1 time unit for quay cranes
and 3 time units for stacking cranes are assumed). Some quay cranes may not
yet be ready for service, e.g., because they need to be repositioned first (in the
example, Q2 becomes ready for service at t0=2).

3. Determination of the stacking crane sequences: Once the quay cranes have been
scheduled, the earliest drop-off times of the containers at the stacking cranes (or
the related pick-up times in case of an export container) can be calculated.
Because the storage location for each container has been determined in
advance, these times can be calculated by adding (subtracting) the average
travel times (given by a time matrix) to the times of the quay crane schedules.
The resulting times are used to determine the sequence of the stacking crane
operations.

4. Determination of the stacking crane schedules: Considering the handling times
at the stacking cranes, the corresponding schedules are derived. To obtain a
feasible schedule, some operations may have to be right-shifted to avoid
overlapping. The shift operations have been adapted to the characteristics of the
problem at hand in the following manner: If after step 3 a pick-up operation and
a drop-off operation overlap in a way that the pick-up would start while a drop-
off is performed, then the pick-up is scheduled before the drop-off (even though
it would have been started later). Thus, at the stacking cranes, pick-up
operations are prioritized over drop-off operations. The reason for this is that
drop-offs are the last operations for each container, while pick-ups are the first
operation and a delay would also hold up the drop-off at the quay crane.

5. AGV dispatching: The schedules of quay cranes and stacking cranes are the
inputs to AGV dispatching. The AGV system is considered as the service
resource with the objective of performing all necessary transportation
operations while minimizing the late arrival of AGVs, especially at the quay
cranes. In the dispatching step, orders are assigned to AGVs and combined to an
AGV tour. In the example, orders 1 and 4 are assigned to AGV V1. Note that,
because of the individual sequence, operations may be delayed again compared
to the crane schedules. For example, the drop-off of container 4 is scheduled at

217Deadlock handling for real-time control of AGVs at automated container terminals



time 4:35 for stacking crane S2. However, according to the schedule of AGV
V1, container 4 has not even been picked up by that time. These discrepancies
arise because of the hierarchical determination of the schedules of cranes and
AGVs. The schedules of the cranes are not adapted to the results of the AGV
dispatching.

This planning procedure roughly models the requirements of the container
terminal practice where a large number of additional side constraints need to be
considered. However, these aspects are not relevant for our study, which focuses on
deadlocks caused by AGV dispatching.

As stated before, the discrepancies between the crane and AGV schedules may
finally lead to a deadlock situation. In our simulation study (cf. Grunow et al.
2006), we detected the occurrence of deadlocks, which in some cases caused the
complete standstill of one or more quay cranes—the worst possible scenario for a
container terminal. Therefore, in a simulation study as well as in a real logistics
control system, it is important to take deadlocks into consideration, because they do
arise and impair the performance of the AGV system significantly.

To illustrate the development of a deadlock, consider the situation for the
schedules derived in Fig. 2. The corresponding section from a terminal
configuration with quay cranes Q1 and Q2, stacking cranes S1 and S2, and
vehicles V1 and V2 is outlined in Fig. 3.

The distances (travel times) between quay and stacking cranes are indicated in
Fig. 3a by the time matrix. Operations are encoded by their type (“p” for pick-up
and “d” for drop-off) and the corresponding transportation order, the scheduled

Fig. 2 Main planning steps to get from the stowage plan to an AGV schedule
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starting time, and the secondary resource, i.e., the vehicle that transports the
container or the crane that loads or unloads the container. For example, the first
operation “d3 (3:25, V2)” in the schedule of stacking crane S1 indicates that S1
plans to start serving vehicle V2 for performing the drop-off operation d3 of
container (transportation order) 3 at time t=3:25. For the handling times, 1 time unit
is assumed for quay cranes and 3 time units is assumed for stacking cranes.
Consider the situation at time t=0:00 depicted in Fig. 3a.

The current schedule of vehicle V1 at this point in time is:

1. t=0:00: start the pick-up of container 1 at Q1 (the pick-up is finished at t=1:00)
and travel to S1 (arrival at t=3:45)

2. t=6:25: drop off container 1 and travel to Q2 (arrival at t=10:00)
3. t=10:00: pick up container 4 and travel to S2 (arrival at t=11:35)
4. t=11:35: drop off container 4

The schedules of vehicle 2, quay cranes Q1 and Q2, and stacking cranes S1 and
S2 can be interpreted accordingly.

Figure 3b shows the situation at time t=2:00 after the first pick-up operations p1
and p2 have been completed by vehicles V1 and V2, respectively. The next
operation of vehicle V1 is to drop off container 1. To carry out this operation,
stacking crane S1 is required. However, stacking crane S1 waits for vehicle V2,
which waits for stacking crane S2, which in turn waits for vehicle V1. Hence, a
deadlock is given.

This paper shows how to detect deadlocks and how to resolve them in a
container terminal application. This paper is closely linked to the paper on AGV
dispatching strategies by Grunow et al. (2006). The following section provides an
overview of different types of deadlocks and corresponding handling techniques.
Next, in Section 3, two different deadlock detection methods are introduced. In
Section 4, three different procedures are proposed to resolve deadlock situations
arising between handling units in an automated container terminal. These

Fig. 3 Development of a deadlock situation
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procedures aim to modify the sequence of handling operations or to assign them to
alternate resources so that no conflicts between concurrent processes occur.

2 Classification of deadlocks and deadlock handling techniques

The deadlock problem is—as stated by Coffman et al. (1971)—a logical problem
that may arise in different contexts. Hence, before developing a deadlock-handling
strategy for a specific problem, it is useful to take a closer look at the general
characteristics of deadlocks. According to Coffman et al. (1971) and Liu and Hung
(2001), for a deadlock to occur, four conditions must hold simultaneously:

1. “Mutual exclusion” condition: no resource can be shared by more than one task.
2. “Wait for” condition: tasks hold resources already allocated to them while

waiting for additional resources.
3. “No preemption” condition: resources are not accessible until they are released

by the task using them.
4. “Circular wait” condition: a circular chain exists, such that each task holds one

or more resources that are being requested by the next task in the chain.

Each deadlock handling approach aims at breaking at least one of these
conditions or ensuring that all of them are never fulfilled at the same time. Because
the first condition holds for most systems, research is focussed on the three latter
ones. The usual way to avoid the second condition is to require that a task must
request all resources needed for its completion at once. A prominent example for
this strategy is the use of the Banker’s algorithm as proposed, for example, by Kim
et al. (1997). Condition 3 can be overcome if a task is able to release all currently
allocated resources as soon as its requests for further resources are denied.
However, this possibility is only given in very few systems. Finally, a circular wait
as stated in the fourth condition can be avoided by imposing a linear ordering of
resources. A task is then only allowed to request resources following the currently
allocated ones in the ordering.

In general, deadlocks can be addressed by three approaches: prevention,
avoidance, and detection and resolution (cf. Venkatesh and Smith 2003; Liu and
Hung 2001).

1. Deadlock prevention is an offline approach, aiming at the complete avoidance
of any situation that may lead to a deadlock. This is usually accomplished by
establishing a set of generic rules ensuring that the four necessary conditions for
deadlocks cannot be simultaneously satisfied.

2. Deadlock avoidance dynamically allocates the system resources by using a
suitable online control policy, seeking to avoid deadlock situations resulting
from the next event in the operation of the handling system.

3. The third approach of deadlock detection and resolution does not attempt to
prevent deadlocks in advance, which is usually impossible in a highly dynamic
application environment. Instead, deadlocks are detected as soon as possible
and then resolved.
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In AGV systems employed in automated container terminals, two different
types of deadlock may occur. They can come about within the AGV system or
through the interaction between the AGV system and other equipment units (e.g.,
cranes) of the material handling system. The first type of deadlock concerns the
routing of AGVs. Deadlocks may arise between two or more vehicles blocking
each other in the guide path because they enter a segment of the guide path from
opposite directions. Apparently, all of the four conditions stated above are fulfilled:
two AGVs usually may not share a guide path segment (condition 1), an AGV
blocks a segment while waiting for the next to be free (condition 2), a segment is
only released when the AGV has completely left it (condition 3) and a circle of
AGVs waiting for each other can occur (condition 4). It is easy to see that for the
problem at hand the first three conditions are satisfied permanently. So, only the
fourth condition can be avoided. A simple deadlock prevention strategy is to design
the guide path as a single loop, thus making the formation of a circular wait
impossible. In most seaport container terminals, a loop-like guide path is
employed, which makes a mutual blocking of AGVs nearly impossible. However,
in the case of a more complex guide path, other deadlock handling techniques must
be employed.

In the academic literature, deadlock avoidance approaches for vehicle routing
problems have been proposed. Moorthy et al. (2003), as well as Yeh and Yeh
(1998), used a graph-based heuristic to predict a deadlock. If a vehicle would create
a circular wait by entering a guide path segment, it has to wait until the situation
has changed or a rerouting must be performed. Wu and Zeng (2002) propose a
Petri-net-based approach to predict (and avoid) possible deadlocks. In Fanti (2002),
digraphs are used to control the path assignment to the vehicles and their moves in
the system. Finally, in Reveliotis (2000), an adaptation of the Banker’s algorithm
for robust AGV conflict resolution is suggested. Whereas the former approaches
clearly aim at deadlock avoidance, the last one can as well be considered a quite
flexible deadlock prevention algorithm. Deadlocks within the AGV system have to
be avoided by adequate procedures embedded into the routing and traffic control
software supplied by the provider of the AGV system. Routing and traffic control,
however, are outside the scope of this paper. Hence, we do not consider these types
of deadlocks in the sequel.

The second important category of deadlocks is caused through the interaction
between the AGV system and other handling equipment. Such deadlocks may arise
in situations where resources are waiting for requests from each other. This type of
deadlock has been observed especially in the operation of flexible manufacturing
systems (e.g., Kim and Kim 1997; Venkatesh and Smith 2003). Equipment may
also be blocked in this manner in a container terminal. Particularly, AGVs are liable
to this kind of deadlock because they always require a secondary resource, either a
quay crane or a stacking crane, to perform the pick-up and drop-off operations.
Because usually no buffering of containers takes place at the interface between the
AGVs and the cranes, the consequences of deadlocks are rather severe. Again, all
four deadlock conditions are satisfied: a crane or an AGV cannot perform more
than one operation (“mutual exclusion”), a resource is blocked while it is waiting
for another resource to complete the task (“wait for”) as in Fig. 1, a resource can
only be released by its current task (“no preemption”) and circular wait relations
may occur as in Fig. 3b. To our knowledge, however, no paper exists that focuses
on deadlock problems in container terminals caused by the interaction of the AGV
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system with the quay and stacking cranes. This may be due to the fact that the
problem is less relevant when simple online dispatching rules are applied and the
AGVs are operated in single-load mode, as is currently practiced in existing
automated container terminals. However, Grunow et al. (2004, 2006) show that
significant performance gains can be obtained when more elaborate offline
heuristics are employed which do utilize the multi-load capabilities of the AGVs.
The numerical results of this paper will show that deadlocks do become an
important issue under these circumstances.

Principally, all three proposed methods may be used to handle this second type
of deadlock in container terminals. However, to fully utilize the approach of
deadlock prevention, complete information about all future events in the system is
required and a static application environment has to be assumed. For the container
terminal application considered here, none of these conditions hold. Equally, as
deadlock avoidance is basically applicable for systems with incomplete
information, a static environment still has to be assumed. In the case of
stochastically varying handling times, as these handling times are typical of seaport
container terminals, the applicability of this approach is rather limited. According
to Kim et al. (1997) deadlock detection and resolution is most effective regarding
utilization rates of the resources in the system. On the other hand, this approach
requires procedures of significantly higher complexity to be embedded into the
logistics control software of the terminal and thus higher effort associated with the
handling of deadlocks.

Kim et al. (1997) consider deadlock prevention (referred to as “prevent
deadlock without look-ahead”) as the most conservative approach, followed by
deadlock avoidance (referred to as “prevent deadlock with look-ahead”), and,
finally, deadlock detection and resolution (or recovery) is deemed the most flexible
approach. For the above reasons, we decided to develop a deadlock detection and
resolution approach for AGV systems in highly automated container terminals.

3 Deadlock detection

The main challenge with deadlock detection is to find a realistic and compact
representation of the system’s actual status. In manufacturing systems, the
predominant representation scheme is the resource allocation graph, which can be
adapted to the container terminal environment (see Section 3.1). Regardless of
which representation is used, it must be updated whenever the system status
significantly changes. Because frequent updates are needed, they must be realized
without considerable computational effort. For the detection of deadlocks, two
different techniques are presented: One technique is based on a matrix
representation of the terminal system (see Section 3.2). The other technique is a
graph-oriented procedure, which directly traces the requests for the individual
resources (see Section 3.3).

3.1 Adaption of the resource allocation graph to container terminals

A popular representation scheme of the system state is the so-called resource
allocation graph (cf. Peterson and Silberschatz 1989; Elmasri and Navathe 1989;
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Kim and Kim 1997). This graph consists of vertices for each part and each resource
of the system. Parts are represented by circles, whereas resources are represented
by rectangles. There are two types of edges in this graph: request edges and
assignment edges. A request edge p→r (directed from part p to resource r) is
introduced, if part p is currently waiting for resource r. In contrast, an assignment
edge r→p (directed from resource r to part p) is added, if resource r has been
allocated to part p. In some applications, parts are identified with tasks. In a
container terminal, cranes and AGVs are resources, while handling operations
(pick-up or drop-off) can be considered as parts.

As mentioned above, the dynamics of the system make it extremely difficult to
completely avoid deadlocks. We therefore decided to employ the resource
allocation graph mainly to examine the status of the container terminal during the
simulation phase and identify deadlocks as soon as they arise, as well as to trigger
the deadlock resolution procedures introduced in Section 4. Yet, the sheer number
of operations to be performed would lead to a rather large resource allocation
graph. We therefore tried to modify the resource-allocation-graph concept to match
the special requirements of the problem at hand. An important property of our
problem is that each operation requires exactly two resources—one AGV and one
crane. In flexible manufacturing systems, where the resource-allocation-graph
concept originates from, a task could also require more than two resources.

Secondly, remember that we only seek for a deadlock detection and resolution
approach and do not aim at the prevention or avoidance of deadlocks. It is therefore
sufficient to consider only the next operation in the schedule of each resource. For
the problem at hand, we say that an operation is assigned to a resource if and only if
it is the next operation of this resource. Now, if an operation only requires two
resources, there can be the three main situations for each operation represented in
Fig. 4 (apart from trivial cases, in which one or both of the resources are not yet
assigned to the task).

In the first case of Fig. 4a, the operation is assigned to both resources, while in
the latter two cases either the AGVor the crane is requested but not yet assigned (in
the sense that the operation is not the first operation in the respective resource’s

AGVoperation

a  Original representation b  Reduced representation

crane

AGVoperationcrane

AGVoperationcrane

AGVcrane

AGVcrane

AGVcrane

Fig. 4 Representation of waiting relationships
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current schedule). It is now easy to see that operations need not be considered at all
if the aim is to detect a current deadlock. The only important information is if a
resource is waiting for another resource or not. Thus, the latter two situations in
Fig. 4a can be described as “the crane is waiting for the AGV” or “the AGV is
waiting for the crane,” as is depicted in Fig. 4b. If a resource is waiting for another
resource, this implies that the next operation in the schedule of this resource is not
identical to the next operation in the schedule of the other resource. In the first case
of Fig. 4a, the operation is the next one in the schedules of both the crane and the
AGV. In other words, none of the resources is waiting for another resource
(cf. Fig. 4b).

For the problem at hand, it is irrelevant which operation actually causes the
waiting relation. The representations shown in Fig. 4a,b are equivalent. In addition,
the representation of Fig. 4b considerably reduces the matrix size, especially if
numerous transportation orders have to be monitored, as is the case in a container
terminal.

3.2 Matrix-based deadlock detection

3.2.1 Matrix representation of the resource allocation

Belik (1990) introduced a matrix representation of the resource allocation graph
and suggested matrix operations to update the matrix after the insertion or deletion
of an edge as well as a cycle test. Kim and Kim (1997) applied this concept to avoid
deadlocks in flexible manufacturing systems. A similar approach can be applied for
deadlock handling in a container terminal, additionally making use of the reduced
representation of waiting relations proposed in Section 3.1.

For the matrix representation of the waiting relations resulting from the current
resource allocation, some information has to be stated explicitly, which is already
implicitly available in the graph. As an example, consider the situation shown in
Fig. 5a. Quay crane Q1 is waiting for vehicle V1, which in turn waits for stacking
crane S1. As a result, Q1 is also waiting for S1. Although this relationship is easy to
deduce from the graph, it has to be coded explicitly in the corresponding matrix
(see Fig. 5b). Matrix D consists of {0,1}-elements, where D(i,j)=1, if and only if
resource i is waiting (directly or indirectly) for resource j. As D(Q1,V1)=1 and
D(V1,S1)=1 represent the immediate waiting relation,D(Q1,S1) must also be set to
1 to reflect the indirect waiting relation between Q1 and S1. The possible transitivity

Fig. 5 Resource allocation graph and matrix representation of waiting relations
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of the “waiting for” relationship needs to be considered for each edge that is going
to be inserted or deleted.

3.2.2 Matrix operations

There are two basic events that induce changes in the matrix representation of the
resource allocation: the release of a new schedule and the completion of a task,
either pick-up or drop-off. When a new schedule is released, most of the waiting
relations between the resources are no longer up-to-date. Hence, it seems adequate
to create a new matrix from all of the waiting relations in the updated schedule. In
contrast, the completion of a task calls for rather small changes in the matrix.
Assume, for instance, that task A has just been completed by use of AGV V1 and
crane S1. Let the successors of task A in the respective schedules of resources V1
and S1 be task B and task C, respectively. Clearly, there can be at most four
possible conditions (see Fig. 6 for a graphical representation).

1. If task B is not the next one in the schedule of the corresponding crane, V1 has
to wait for this crane (cf. Fig. 6a).

2. If the corresponding crane of task B had been waiting for V1 so far, it no longer
does so, because V1 is now ready to perform task B (cf. Fig. 6b).

3. If task C is not the next one in the schedule of the corresponding vehicle, S1 has
to wait for this vehicle (cf. Fig. 6a).

4. If the corresponding vehicle of task C had been waiting for S1 so far, it no
longer does so, because S1 is now ready to perform task C (cf. Fig. 6b).

Fig. 6 Update of waiting relations after completion of a task
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Cases 1 and 3 require the insertion of a new waiting relation, while in cases 2
and 4 an existing waiting relation has to be removed. The insertion and deletion of
edges in the resource allocation graph are realized by matrix operations. In this
paper, the matrix operations are only described briefly. For a detailed explanation,
the reader is referred to Kim and Kim (1997).

Figure 7 gives an example of the insertion and deletion of an edge. In the first
step, matrix Ψu;v ¼ Πu þ Iuð Þ � ΠT

v þ ITv
� �

is calculated, which identifies the
changes to matrix D caused by the insertion or deletion of some edge (u,v) in the
resource allocation graph. Πu is the u-th column vector of D and ΠT

v is the v-th
row vector of D. Iu and ITv denote the unit column and row vectors of u and v,
respectively.

Fig. 7 Example insert and delete operations

226 M. Lehmann et al.



In the second step, matrix D is updated with matrix Ψu;v . If edge (u,v) has to be
inserted, the updated matrixD′ is calculated byD′=D Ψu;v , where indicates that
the element-wise maximum of both matrices is determined. In the case of insertion,
matrix D′ is calculated by use of the respective minimum function D′=D Ψu;v :

As can be seen, the transitivity is maintained by applying these operations, e.g.,
node 4 becomes a successor of node 1, after the insertion of edge (2,3). Note that
the operations necessary to update the matrix only work properly if the graph is
acyclic (cf. Belik 1990). It is therefore important to perform a cycle test after each
insert operation. This cycle test merely consists of checking the diagonal elements
of D. If one of them is positive, i.e., the corresponding resource is waiting for itself,
a deadlock has been detected. Creating a new matrix D (e.g., after the release of a
new schedule) only requires a succession of insert operations, each of which is
followed by a cycle test.

Note that with the deadlock detection method presented in this section, the
current state of the entire system is reflected in every moment. Some information is
essential, for instance the answer to the question of whether there is a deadlock
cycle in the system. In addition, there is information that is not necessary, but can
be used to improve minor decisions of the approach. For instance, it can be derived
from the matrix how many other resources are currently waiting for a particular
crane or AGV. This information could be used to select the crane to which a
specific deadlock resolution procedure is applied (see the development of deadlock
resolution techniques in the next section). It actually happens that more than one
resource of the same type (quay crane or stacking crane) is involved in a cycle. In
such a case, priority in the deadlock resolution procedure could be given to the
crane that is currently requested by the largest number of other resources.

3.3 Graph-oriented deadlock detection

As mentioned in the previous section, the major drawback of the matrix-based
deadlock detection procedure is the necessity to reflect the entire system state by a
single matrix and to apply the update operations to the entire matrix. Hence, in the
case of a large number of equipment units, this deadlock detection procedure is
computationally rather demanding. The computational complexity of the matrix-
based deadlock detection procedure can be assessed as follows: Let nbCranes be
the overall number of quay and stacking cranes used in the terminal and nbAgvs be
the number of AGVs employed. Then, the dimension of the waiting relation-
ship matrix is nbCranes+nbAgvs, hence, each matrix update is of complexity

O nbCranesþ nbAgvsð Þ2
	 


. Each time a new schedule is released, one waiting

relation has to be inserted for each equipment unit. The computational effort is

therefore O nbCranesþ nbAgvsð Þ3
	 


for each scheduling request. On the other

hand, the completion of each order requires the insertion of a waiting edge of

complexity O nbCranesþ nbAgvsð Þ2
	 


: However, because the number of

scheduling requests is at least as high as the number of orders handled per day
(because each new order triggers a scheduling request), the latter effort can be
neglected. In a real terminal application, nbCranes=50 and nbAgvs=50 are
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common dimensions, and the number of scheduling requests easily exceeds 10,000
per day, while in a manufacturing environment, these numbers are an order of
magnitude smaller. Furthermore, real-time requirements are much more restrictive
in container terminals, in which runtimes of 1 s are desired. Therefore, the matrix-
based deadlock detection method appears to be attractive for applications in small-
sized container terminal configurations.

In any case, the complete waiting relationship matrix provides useful
information about the actual system state. However, for deadlock detection, only
part of the matrix is actually needed. To detect a new deadlock caused by the
insertion of an edge into the waiting relationship graph, the deadlock detection
procedure can be simplified as follows:

Assume that edge R1→R2 has to be inserted into the waiting relationship
graph. First, the successor of R2 in the graph, say R3, is identified. The procedure
further identifies the immediate successor of the current resource R3, say R4, and
continues until the iteration limit of maxNbNodes is reached. In each step, it is
checked whether the successor resource is identical with R1, the origin of the edge
to be inserted into the graph. Should this be the case, then a cycle in the graph has
been found and a deadlock has been detected. Otherwise, the graph is proven to be
acyclic, i.e., no deadlock currently exists. Note that at most maxNbNodes ¼ 2 �
min nbCranes; nbAgvsf g nodes must be checked because in the deadlock graph,
crane nodes and AGV nodes alternate. Thus, after maxNbNodes nodes, either all
AGVs or all cranes have been checked. Figure 8 outlines the complete procedure in
pseudocode.

In the example of Fig. 3b, maxNbNodes is equal to 4, indicating that each cycle
can be, at most, of length 4. If the algorithm would be employed for that example,
e.g., starting with AGV V1, stacking crane S1 would be identified as successor
because a waiting relation exists between V1 an S1. As the actual node (S1) does
not equal the start node (V1), and maxNbNodes is not exceeded, a new iteration is
started. In the end, the algorithm terminates for actNode=startNode=V1, reporting
the cycle V1→S1→V2→S2→V1.

Fig. 8 Algorithm for graph-oriented deadlock detection
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The correctness of the proposed deadlock detection procedure is based on
certain properties of the problem at hand:

1. Each resource has at most one successor in the waiting relationship graph.
Recall that resource v is called successor of resource u if the next operation of u
is not the next operation of v, but v is required to perform this operation.
Because each resource has at most one next operation, it can also have no more
than one successor.

2. If an acyclic graph becomes cyclic after the insertion of edge (u,v), then it has at
most one cycle and (u,v) is part of this cycle.

Property 2 can be proved indirectly. Suppose (for the purpose of contradiction)
that two cycles would be created by inserting (u,v). Then, each of them must
include (u,v). Otherwise, the cycle would have existed before the insertion of this
edge. As a result, the situation displayed in Fig. 9 arises. Starting with u and
proceeding from each node to its successor node, a node w with at least two
successors must be reached before a cycle is closed. Otherwise, (u,v) cannot belong
to the second cycle because there is no connection between (u,v) and that cycle. But
w, having more than one successor, is a contradiction to property 1. Therefore,
property 2 holds.

It is important to keep in mind that the proposed deadlock detection procedure—
like the matrix-based deadlock detection—assumes an acyclic graph. Hence, the
detection of a cycle (i.e., a deadlock) cannot be postponed, but must take place
immediately as soon as the deadlock occurs. Nonetheless, after the release of a new
schedule, there can be more than one cycle in the real system. To understand this,
one has to remember that there is the real system on one hand and its internal
representation on the other hand. Once a new schedule is released, the internal
representation of the new situation is build up step by step, inserting one waiting
relation after the other, maintaining the property of being acyclic. Each time a
deadlock is detected, both the real system and the internal representation are
changed accordingly. In the end, the real system is deadlock-free and the internal
representation correctly reflects the actual situation. In Section 4.5, after having
introduced the deadlock resolution procedures, an example is given to illustrate the
congruence of real system and internal representation.

The major advantage of the graph-oriented procedure is that it does not need
elaborative matrix operations. The procedure simply passes through the chain of
waiting relations each time an edge is inserted. Note that the deletion of an edge
does not need to be considered because it cannot create a cycle. Instead of
examining the complete matrix, only the waiting relations of the two affected

u v w

Fig. 9 Section from the waiting relationship graph after the insertion of edge (u,v)
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resources need to be updated.When a new schedule is released, one waiting relation
has to be inserted for each resource. The complexity of the deadlock detection
algorithm is thus reduced to O min nbCranes; nbAgvf g � nbCranesþ nbAgvsð Þð Þ
for each scheduling request.

Partly, the higher performance of the graph-based approach is achieved by
sacrificing some nonessential information, as is the number of resources currently
waiting for each AGV or crane. This information is used in the matrix-based
approach to select the most constrained crane in the deadlock cycle to which the
deadlock resolution procedure (explained in the next section) should be applied. It
is, however, easy to determine the number of AGVs physically waiting in front of
each crane. Thus, in the graph-oriented approach, the most constrained crane is
chosen as the one with the most (physically) waiting AGVs.

4 Deadlock resolution

In a deadlock situation there exists a cycle of waiting relations between cranes and
vehicles in the resource allocation graph. The links between two corresponding
resources consist of operations for handling the transportation orders in the crane’s
and the vehicle’s schedules. Hence, to resolve the deadlock, the schedule of at least
one of the affected resources has to be modified. Of course, the effort required for
changing the schedule depends on the type of resource. For instance, resequencing
the transportation orders in the schedule of a quay crane would require extremely
high effort. Quay cranes typically represent the bottleneck resources of the terminal
because they directly influence the turnover-time of the vessels. Moreover, it is
often quite difficult to reshuffle containers inside the vessel, which might be
necessary if the quay crane had to deviate from its predetermined loading or
unloading schedule. Hence, it is a strong precondition that the schedules of the
quay cranes remain unchanged.

In contrast, repositioning containers is much easier accomplished at the storage
blocks by use of the stacking cranes. Such operations are less time consuming and
are frequently carried out during the normal operation of the terminal. In many
cases, it is even possible to pick up another container in the crane’s schedule
without reshuffling, if the container is stored on top of a pile in the block. Changing
a stacking crane’s schedule to resolve a deadlock is especially appropriate because
it has no side effects apart, of course, from a longer handling time.

Changing a vehicle’s schedule, however, is not that easy. Because a vehicle is
involved in both pick-up and drop-off operations, there is less flexibility in
changing its schedule. Depending on the current status of the vehicle, certain
operations may not be feasible. For instance, a pick-up operation can only be
performed if the vehicle is not fully loaded, while dropping off a container requires
that this container is already loaded on the AGV. Another obvious constraint is that
a drop-off operation can never be performed before the corresponding pick-up
operation. All these limitations restrict the possibility of changing the vehicle’s
schedule. Additional constraints arise from the fact that an AGV is unable to load a
container without the aid of a crane. Therefore, the interdependency between the
vehicle’s and the crane’s schedules must be considered.

In our deadlock resolution approach, we first try to resolve a deadlock situation
by changing the stacking crane’s schedule. If this is not feasible, changing the
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vehicle’s schedule is the only remaining option. We propose three different
deadlock resolution procedures, namely:

1. modifyScSequence
2. advanceOrder
3. reassignOrder

The first procedure requires the least intervention into the operations of the
terminal system, while the last one has the strongest impact on the schedules of the
different resources.

4.1 Procedure modifyScSequence

This procedure is the easiest to implement, because it requires the least changes in
the schedules of the resources. It is called for a vehicle and a stacking crane in the
deadlock cycle, when the vehicle is waiting for the crane. An exemplary situation is
shown in Fig. 10. The edges in the graph indicate the scheduled interaction
between stacking crane S1, quay crane Q1, and vehicles V1 and V2. The schedule
of each crane or AGV is shown beside the respective resource. As an example, for
stacking crane S1, the pick-up of container 1 is scheduled after the pick-up of
container 2. Remember that for a vehicle the consecutive pick-up of two (20-ft)
containers (as p4 and p2 for V2) is feasible if dual-load carriers are employed, as in
the example.

Suppose that in the situation depicted in Fig. 10a, the waiting edge (Q1,V1) has
to be inserted into the resource allocation graph (e.g., as a result of the completion
of the task that had been scheduled before p3). Obviously, this insertion would
result in a circular relationship, indicating a deadlock between the four resources.
In this case, the procedure modifyScSequence can be called up for S1. By means of
this procedure, the operation p1, which V1 is waiting for, is advanced from the
second to the first position in the schedule of S1. As a result, V1 no longer has to
wait for S1 because its next operation can now be processed. In addition, S1 for the
moment ceases to wait for V2 because its current next operation (p1) can be
processed as well. Only after resolving the impending deadlock, edge (Q1,V1) can
be inserted without causing a cycle (see Fig. 10b).

Fig. 10 Procedure modifyScSequence
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Note that by applying the modifyScSequence procedure, no additional waiting
relation is created. Instead, two former waiting relations have been removed.
Hence, no further deadlock can be caused by the use of this procedure.

4.2 Procedure advanceOrder

Procedure advanceOrder is applied in a situation in which a quay crane is
immediately waiting for an AGV and both resources are involved in a deadlock
cycle. As an example, consider the situation shown in Fig. 11. Assume that a new
edge (Q2,V1) has to be inserted into the resource allocation graph depicted in
Fig. 11a. Clearly, a cycle would be created. To prevent deadlocks, the schedule of
vehicle V2 has to be changed, i.e., its four operations are resequenced. Suppose that
the next operation of Q1—being either a pick-up or a drop-off operation from the
viewpoint of the corresponding vehicle V2—could be advanced to the first position
in the schedule of V2. In the case of a pick-up operation, this procedure is feasible,
if V2 currently provides sufficient unused loading capacity. On the other hand, in
the case of a drop-off operation, the respective container must already have been
loaded onto V2. In the example of Fig. 11a, the next operation p2 of Q1 meets the
first condition because V2 is empty in the current situation. Thus, the deadlock is
resolved by advancing both the pick-up and the drop-off operations, p2 and d2, of
the corresponding container to the first and second positions in the schedule of V2
(for a pick-up, we always move both the pick-up and the corresponding drop-off to
the top of the schedule to avoid infeasible schedules, e.g., the vehicle’s capacity is
exceeded). As a result, the waiting relations between Q1 and V2, as well as those
between V2 and Q2, can be deleted and the edge (Q2,V1) can now be inserted
without creating a cyclic graph (see Fig. 11b).

Note again that no additional waiting relation is created. However, as a
consequence of the change in the schedule of V2, this vehicle may need to deviate
from its current trip. Should no online information about the vehicle’s current
position and route in the guide path be available, the vehicle can only be redirected
to the new destination Q1 after the arrival at its former destination Q2. While, in the
dispatching phase, rerouting vehicles from their current mission is considered
infeasible, rerouting might be unavoidable to resolve a deadlock situation.

Fig. 11 Procedure advanceOrder
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4.3 Procedure reassignOrder

Although most deadlocks can be resolved by the use of the two procedures
presented in the previous subsections, situations may occur in which none of these
procedures can be applied. For instance, in the situation depicted in Fig. 11a, it
might happen that the next operation of the quay crane could not be carried out
immediately, even if it is located at the first position in the schedule of the
corresponding AGV, because of two possible reasons. The first reason is that the
next operation is a pick-up, but the vehicle’s loading platform is blocked by other
containers. The second reason is that the next operation is a drop-off, but the
container has so far not been loaded onto the vehicle. In both situations, advancing
the corresponding operation in the vehicle’s schedule will be of no help because
additional operations need to be performed first.

In such a case, a standby AGV has to be provided. Standby AGVs are not
utilized during regular operating conditions. Instead, they are activated only to
resolve deadlock situations. The adequate number of such vehicles is best
determined by means of simulation studies. In most terminal configurations, a
single standby vehicle is sufficient to resolve all occurring deadlocks. However, in
systems vulnerable to frequent deadlocks, a greater number of standby vehicles
may be a better choice. In addition, vehicles temporarily unemployed may be used
instead of standby AGVs in particular, as some buffer capacity exists in almost
every AGV system to be found in manufacturing systems and terminal
configurations.

The interventions required for the execution of the reassignOrder procedure are
usually more severe compared to the other deadlock resolution procedures
presented in the previous subsections. As an example, consider the situation shown
in Fig. 12a.

Assume again that edge (Q2,V1) has to be inserted. In this case, procedure
advanceOrder cannot be applied, because Q1 is waiting for vehicle V2 to perform
operation p2. The loading platform of vehicle V2, however, is blocked by the 40-ft
container 1, which needs to be dropped off first. For the same reason, operation p4
cannot by advanced in the schedule of V1. To resolve the deadlock, which arises
after the insertion of the edge (Q2,V1) into the chain V1–Q1–V2–Q2, the pick-up

Fig. 12 Procedure reassignOrder
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and drop-off operations p2 and d2 of the container located at the first position in the
schedule of Q1 are assigned to a standby AGV. In Fig. 12, this vehicle is denoted
by Vx. To avoid being trapped in a deadlock themselves, standby AGVs are only
operated in single-load carrier mode, i.e., they carry out one transportation order at
a time without interlocking pick-up and drop-off operations of different orders. If a
new transportation order is assigned to a standby AGV, it is always appended at the
end of its schedule. As a result of this procedure, cranes Q1 and S1 are no longer
waiting for V2 and the insertion of edge (Q2,V1) does not create any cycle in the
resource allocation graph. The result is shown in Fig. 12b. As can be seen,
additional edges (Q1,Vx) and (S1,Vx), indicating the waiting relationship of Q1
and S1 for Vx, have to be introduced. It is therefore important to assure that these
new edges do not create further deadlock cycles. As an example, Fig. 13 illustrates
the consequences of using the procedure reassignOrder.

Let edge 9 [in Fig. 12b labeled (Q2,V1)]be the edge that was to be inserted
initially. The insertion of edge 9 would close a cycle. In the course of the
reassignOrder procedure, edges 1 and 2 have been deleted. Because the next order
of Q1 has been reassigned from V2 to Vx, neither Q1 nor S1 is waiting for V2 any
more. However, both cranes may now be waiting for Vx and thus require the
insertion of edges 5 and 8. This, in turn, could lead to new cycles covering the
standby AGV Vx itself. Now let us have a closer look at the individual cycles. If
Vx belongs to a cycle, it must be waiting for some crane. This crane cannot be a
quay crane, because all quay crane operations assigned to a standby vehicle are at
the first position of the quay crane’s schedule (see the definition of the
reassignOrder procedure, which is only used for quay cranes). Hence, Vx must
be waiting for a stacking crane. This means that at least one stacking crane is
included in the cycle. Thus, the modifyScSequence procedure can be applied to the

Fig. 13 Correctness of the procedure reassignOrder
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most constrained of the stacking cranes in the cycle. In Fig. 13, these cranes are
supposed to be S2 and S3 for the respective cycles. The application of the
procedure modifyScSequence leads to the deletion of a pair of edges, 3 and 4 or 6
and 7. As a result, edges 5 and 8 can be inserted without creating a new cycle. No
further waiting relations are created. Hence, the initial deadlock is finally resolved
in, at most, two steps.

4.4 The deadlock resolution algorithm

The three basic deadlock resolution procedures represent the core modules of the
comprehensive deadlock resolution algorithm outlined in Fig. 14. The deadlock
resolution must be called if new waiting relations arise. There are only two events
that may cause new waiting relations. Firstly, after an operation has been finished,
the next operations of the affected AGV and the affected crane move to the top of
their schedules. If these operations are not on top of the schedules of the
corresponding resource (a crane for the AGV and an AGV for the crane), new
waiting relations are created. On the other hand, each new dispatching may create
several new waiting relations by thoroughly changing the existing schedules. In
both cases, first the matrix-based or the graph-oriented deadlock-detection
procedure is employed. Once a deadlock has been detected, the corresponding
cycle of resources waiting for each other is identified. Next, the type of deadlock is
analyzed and it is decided which deadlock resolution method has to be applied. If
the cycle contains a standby AGV, this deadlock has to be resolved first. As shown
in Section 4.3, there always exists a stacking crane in the cycle, for which the
procedure modifyScSequence can be applied. If the cycle does not contain a
standby AGV, the cycle is checked for stacking cranes. If there is more than one
stacking crane in the cycle, the one showing the largest total number of waiting
relations is chosen and the procedure modifyScSequence is applied to this stacking
crane. If neither standby AGVs nor stacking cranes can be found in the cycle, the
procedure advanceOrder or the procedure reassignOrder is applied to the quay
cranes in the cycle, depending on the feasibility of the next order.

Fig. 14 Deadlock resolution algorithm
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It should be noted that the deadlock resolution algorithm presented here is
complete in the sense that any type of deadlock, in the boundaries specified in this
paper, is guaranteed to be resolved. To prove this, it must be shown that for any
possible deadlock one of the three solution procedures can be applied and that the
application of any solution procedure does not lead to another deadlock.

The first property immediately follows from the design of the deadlock
resolution algorithm (cf. Fig. 14), because for any possible structure of the
deadlock cycle exactly one of the procedures is called up. To show the second
property, remember that the application of the procedures modifyScSequence and
advanceOrder cannot lead to new cycles (see Sections 4.1 and 4.2). From
Section 4.3, it follows that procedure reassignOrder can in fact create new
deadlocks, but each of them could be resolved by an additional application of the
procedure modifyScSequence.

4.5 Congruence between resource allocation graph and system schedule

As mentioned in Section 3.3, after a new schedule is released the resource
allocation graph is constructed anew step by step until it completely resembles the
system’s schedule. Once a cycle is detected, that cycle is resolved and the
construction of the resource allocation graph continues until the entire system is
exactly mirrored. In Fig. 15, the construction process is explained by an example.

In Fig. 15a the situation of the real system is illustrated after a new schedule has
been released. It is easy to see from the schedules that the four equipment units are
waiting for each other. A circular deadlock exists. However, the resource allocation

Fig. 15 Internal representation and real system
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graph will be maintained cycle-free throughout the whole construction process.
Figure 15a–d show the first three steps of the procedure, in which arcs are inserted
to represent the waiting relations caused by the insertion of orders 2, 4, and 1. The
system schedule does not change meanwhile. In Fig. 15e, the attempt to insert an
edge for the waiting relation of order 3 would lead to a cycle, which is detected in
the resource allocation graph. The procedure modifyScSequence is applied to both
the system schedule and the graph. As a result, the schedule of S1 is changed,
which leads to the resolution of the deadlock in the real system. The resource
allocation graph is modified by deleting edges 1 and 2, as well as by inserting edge
3. All deadlocks are now resolved, and the internal representation is equivalent to
the situation in the real system, as shown in Fig. 15f.

5 Numerical results

To prove the effectiveness of the deadlock handling approach presented in this
paper, we conducted numerical tests using an event-driven simulation model. The
main experimental parameters were the size of the container terminal, the degree of
stochasticity for the handling times of the cranes, and the approach used for
dispatching AGVs. We defined small, medium, and large terminal configurations,
the latter comprising 15 quay cranes, 45 stacking cranes, 120 AGVs, and 3,000
transportation orders. Handling times of cranes were analyzed by Vis and Harika
(2004) and Yang et al. (2004). Our simulation studies are based on the distribution
observed empirically by Vis and Harika (2004). Apart from the deterministic case,
we tested three stochastic cases, using the original distribution of Vis and Harika
(2004) as well as similar distributions of the same structure and with the same mean
value, but with half and double of the original variance value, respectively. For
dispatching the AGVs, we used an online heuristic adapted from manufacturing
environments. A first-come-first-served rule is used for vehicle-initiated dispatch-
ing, and a nearest-vehicle rule for transportation-order-initiated dispatching. These
rules were extended to accommodate for the multi-load capability of the AGVs. As
an alternative, an offline (so-called pattern-based) heuristic was developed, which
generates a schedule for the entire fleet of AGVs for a limited look-ahead horizon.
In an iterative approach, the AGVs are assigned to the transportation orders one by
one according to ascending target start times. For each order–vehicle combination,
feasible sequences of pick-up and drop-off operations are evaluated and the best
overall assignment is chosen. Note that the predictive offline approach and the
online approach are both designed as real-time dispatching procedures that are
executed each time a new dispatching request emerges. These heuristics may treat
the AGVs as single-load or dual-load carriers, depending on whether or not the
simultaneous transport of two 20-ft containers is permitted. For details regarding
the experimental design, please refer to the paper by Grunow et al. (2006), which
also provides a detailed description of the dispatching heuristics used in our
simulation studies.

As a first observation, we noticed that the number of deadlocks was not
significantly influenced by the degree of stochasticity. Apparently, the main
reasons for deadlocks are the dynamics of the entire system and the lack of
coordination between quay crane and stacking crane schedules, but not the
stochasticity in handling times. As long as varying handling times do not change
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the stacking crane schedules no additional deadlock can be created. In Fig. 16 the
occurrence of the different deadlock types—requiring the respective procedures
modifyScSequence, advanceOrder, and reassignOrder—is shown. For different
terminal sizes and different AGV modes, an offline heuristic (pattern) and a simple
online rule (basic) are compared. Each bar in the chart comprises the aggregated
results for each of the four stochasticity levels, i.e., 52 different data sets.

From the presented results, the following conclusions can be drawn:

1. The number of deadlocks (per 1,000 transportation orders) decreases with
increasing terminal size. Obviously, in larger terminals, more cranes and AGVs
are operated, which inhibits the development of cycles of mutually blocked
equipment.

2. The total number of deadlocks is small but significant. For realistic terminal
configurations, in which about 10,000 containers are moved each day, no more
than three or four deadlocks are to be expected. Still, deadlocks have to be
accounted for as long as there is even a slight probability for them to happen,
because a single deadlock can (and usually will) lead to the complete standstill
of the terminal because of the innumerable interactions between the equipment
units.

3. However, the effort made to deal with deadlocks should be adequate. Regarding
their limited number, it is unnecessary to implement deadlock prevention or
avoidance methods. These methods require a more conservative use of the
equipment, which leads to lower utilization rates (cf. Section 2 of this paper).
The proposed deadlock resolution methods flexibly respond to the (rare)
occurrence of a deadlock and are hence more efficient in terms of capacity
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utilization. Furthermore, it is sufficient to employ a single standby AGV (which
we did in our tests even for the large terminal configuration).

4. When using the online dispatching rule with the single-load-carrier mode, no
deadlocks occurred at all. Under this rule, each AGV is assigned, at most, one
order. The potential for deadlocks is extremely small. This also explains why
this topic has not yet arisen in the terminal practice where similar rules are used
to dispatch AGVs as single-load carriers. Yet, Grunow et al. (2006) showed that
applying the offline pattern-based heuristic and utilizing the multi-load
capability of the AGVs significantly improves the system performance.
However, our simulation results reveal that the problem of deadlock handling
will become an important issue when this advanced dispatching heuristic is
used.

5. The online dispatching rule combined with dual-load-carrier mode (referred to
as MLC, for multi-load carrier, in Fig. 16) results in the most deadlocks for the
larger scenarios (medium and large). For this rule, all assignments of
transportation orders to AGVs are fixed. Hence, the AGV schedules cannot
be changed to respond to changing target times. However, for the online rule
with dual-load carriers, no deadlocks that need to be resolved with the
“reassignOrder” procedure occurred, because under this rule, at most, two
orders can be assigned to one AGV.

6. For the pattern-based offline heuristic, deadlocks are only significant for the
small scenario. In large terminals’ configurations, there is nearly always a
possibility to avoid deadlocks through adequate schedules.

7. Finally, if the pattern-based heuristic was employed for single-load-carriers,
deadlocks of the type “advanceOrder” did not occur. If the unnested schedules
produced by this rule lead to a deadlock at all, they usually lead to a deadlock of
the type “modifyScSequence,” or to the most severe type “reassignOrder” in its
classical form as shown in Fig. 12.

6 Summary and conclusions

In our initial simulation experiments, we observed that the performance of AGV
dispatching strategies suffered from the occurrence of deadlock situations.
Therefore, a comprehensive scheme to handle deadlocks occurring in the operation
of the AGV system had to be developed. The basic module in the deadlock-
handling scheme refers to the detection of deadlocks. Two different approaches
have been developed. While the matrix-based deadlock detection procedure is
more elaborative, it has the advantage of providing a complete representation of the
current state of the terminal system, i.e., waiting relationships between all
equipment units in the system can be revealed. On the other hand, the graph-
oriented procedure is computationally more efficient, especially if the terminal
configuration comprises a large number of resources and AGV dispatching has to
be performed in real-time.

To resolve deadlocks, an algorithm consisting of three different resolution
procedures has been developed. First, the type of deadlock is identified. Then,
based on the type of resources involved in the deadlock, individual procedures are
applied to reassign transportation orders or to modify the sequence of operations in
the schedule of a resource. It has been shown that the algorithm is able to resolve all
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deadlock situations that may occur in the context of AGV dispatching in automated
container terminals. AGVs are especially liable to deadlocks, because they always
need a secondary resource to perform the pick-up and drop-off operations. Special
emphasis was given to dual-load AGVs, which require more complex dispatching
strategies and thus are more easily involved in deadlock situations.

For a long time, the occurrence of deadlocks in automated manufacturing and
logistics systems has been recognized only for the routing of AGVs in the guide
path, while blocking effects between vehicles and handling units have mostly been
overlooked in the academic literature. Hence, we consider the proposed deadlock-
handling scheme as a first step towards integrated scheduling and dispatching
approaches for equipment units in highly automated container terminals.

The results of an extensive simulation study underline the necessity to develop
deadlock-handling strategies. If the multi-load capability of the AGVs or the more
advanced offline heuristic shall be used, which significantly enhance the system
performance, then deadlocks will become an important practical problem. A
deadlock may lead to the standstill of an entire container terminal. The proposed
deadlock resolution methods are able to flexibly handle deadlocks occurring in
different terminal configurations when different AGV dispatching methods are
used. Furthermore, the limited number of deadlocks indicates that our approach of
resolving rather than entirely preventing or avoiding deadlocks is the most
appropriate alternative, as more conservative approaches would result in lower
equipment utilization. Despite their complexity, it is therefore economically viable
to include the proposed deadlock detection and resolution methods in the logistics
control software of an automated seaport container terminal.
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Deadlock prevention for automated guided
vehicles in automated container terminals

Abstract Automated guided vehicles (AGVs) are an important component for
automating container terminals. When utilizing AGVs to transport containers from
one position to another in a container terminal, deadlocks are a serious problem that
must be solved before real operations can take place. This study assumes that the
traveling area for AGVs is divided into a large number of grid-blocks, and, as a
method of traffic control, grid-blocks are reserved in advance when AGVs are
running. The first purpose of the reservation is to make room between AGVs and to
prevent deadlocks. The objective of this study is to develop an efficient deadlock
prediction and prevention algorithm for AGV systems in automated container
terminals. Because the size of an AGVismuch larger than the size of a grid-block on
a guide path, this study assumes that an AGVmay occupymore than one grid-block
at a time. This study proposes a method for reserving grid-blocks in advance to
prevent deadlocks. A graphical representation method is suggested for a reservation
schedule and a priority table is suggested to maintain priority consistency among
grid-blocks. It is shown that the priority consistency guarantees deadlock-free
reservation schedules for AGVs to cross the same area at the same time. The
proposed method was tested in a simulation study.
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1 Introduction

Recently, automating container terminals became an important issue in worldwide
hub ports. The storage in the yard is automated at the Thames Port, at the Parsir
Panjang Terminal in Singapore, and at the Kawasaki Container Terminals. Both
container transport in the apron and storage in the yard are automated at Rotterdam
and Hamburg.

A difficult part of automation is the transportation function during ship oper-
ations in which automated guided vehicles (AGVs) are present in all the realized
systems. The difficulties arising from using AGVs in container terminals are due to
the large number and size of the vehicles, which require highly complicated traffic
control methods.

One of the most important issues of an AGV traffic control system is preventing
a large number of AGVs from becoming deadlocked. Previous researches (Evers
and Koppers Stijn 1996; Lee and Lin 1995; Rajeeva et al. 2003; Reveliotis 2000;
Yeh and Yeh 1998) used zone control policies to avoid collisions and deadlocks. In
these researches, guide paths were partitioned into zones; each of which is large
enough to contain the entire body of an AGV, and each zone is exclusively assigned
to only one AGV to avoid collisions. To overcome the inefficient use of space of
the zone control method, this paper proposes a method of partitioning a traveling
area into grid-blocks, each of which is smaller than the physical size of an AGV. As
a result, conventional deadlock prediction algorithms, which utilize the zone
control method, cannot be used in the AGV systems of this study. In addition,
outbound containers have to be delivered to a quay crane (QC) in the same order as
specified in the load sequence list for the QC, which makes the control of AGVs
more difficult.

Berth

Yard

TP

QC

Fig. 1 An illustration of a container terminal
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In describing automated container terminals (ACTs), the Europe Container
Terminals (ECT) terminal in Rotterdam and the Container Terminal Altenwerder
(CTA) terminal in Hamburg will be illustrated as reference models because, in
these two terminals, the movement of containers in the apron and the stacking of
containers in the yard are automated. The ECT terminal, which is the first ACT in
the world, utilizes an automatic stacking crane for each block, whereas the CTA
terminal utilizes two rail-mounted gantry cranes (RMGCs) for each block, as
shown in Fig. 1.

AGVs transport inbound containers from QCs to RMGCs, and outbound
containers from RMGCs to QCs. For each QC, five to eight AGVs usually transport
containers between the apron and the marshalling yard. Because of a large number
of AGVs, simple closed-loop guide-path networks were used in the initial stage of
the ECT. To speed up the deliveries by AGVs, more complicated guide-path
networks have been adopted, with the support of more complex control software.

ACTs usually utilize free-ranging AGVs that do not follow permanent physical
guide paths like electric wires and thus can travel on guide paths temporarily
specified in the memory of a supervising control computer, which we call a “virtual
guide path.” Figure 1 illustrates the guide paths of an automated guided vehicle
system in a container terminal.

The guide path network in Fig. 1 consists of travel lanes under QCs, travel lanes
in front of blocks, transfer lanes in front of blocks, and cross lanes in the middle of
the apron. The areas in front of blocks, where cross lanes, travel lanes, and transfer
lanes merge, have high possibilities for not only congestion but also deadlock.

In the zone control method, which is the most popular in practice, zones, each of
which is large enough to accommodate the entire body of an AGV, are prespecified.
Only a single AGV is allowed to enter a zone, which prevents collisions between
multiple AGVs. Also, AGVs usually travel on unidirectional guide paths in prac-
tice. Because the guide paths are unidirectional, the sequences of zones on which
AGVsmove are consistent with each other. From the consistency in the sequence of
zones, the possibility of deadlocks is removed. For multiple AGVs to travel on
bidirectional guide paths, detailed movements of each AGV must be scheduled so
that collisions and deadlocks between AGVs can be avoided.

However, to improve the utilization of space on the lanes, this study partitions the
travel area for AGVs into grid-blocks, each of which is smaller than the size of a
vehicle. Therefore, an AGVmay occupymore than one grid-block at a time, as shown
in Fig. 2. Thus, the problems of detecting and preventing deadlocks in this study are
different from those of AGV systems where the zone control method is used. Thus,
algorithms developed for the zone control method cannot be utilized in this situation.

Fig. 2 An illustration of multiple grid-blocks occupied by an AGV

245Deadlock prevention for automated guided vehicles in automated container terminals



The traffic in front of transfer positions is very congested and has many flows
with different moving directions. For example, Fig. 3 illustrates possible travel
routes of AGVs in front of transfer points at the end of a block. The size of each
grid-block on travel lanes in front of a yard block is 5×7 m.

Because there exist many possible routes on this region, and because a vehicle
occupies more than one grid-block during travel, the easiest way to prevent
deadlocks of vehicles is to consider the entire set of grid-blocks in the region
ABCD as a single zone and to allow a single vehicle to enter the zone. However, in
this case, long waiting periods of AGVs for entering the zone may be expected.
Thus, to allow more than one vehicle to travel in the zone, methods to prevent
collisions and deadlocks are necessary, which is the issue of this study.

The Petri-net has been most widely used for anticipating and avoiding
deadlocks. Various methods utilizing the Petri-net have been suggested by
Viswanadham et al. (1990), Banaszak and Krogh (1990), Lee and Lin (1995),
Wu (1999), and Wu and Zhou (2000). Cho et al. (1995) and Yeh and Yeh (1998)
suggested methods for anticipating and avoiding deadlocks by using graph models.
Reveliotis (2000) proposed a routing algorithm without deadlocks on bidirectional
guide path networks assuming a zone control method. In the study, a modified
version of Banker’s algorithm was used to check whether a route is deadlock-free.
Kim and Tanchoco (1991, 1993) proposed an algorithm for finding conflict-free
shortest time routes for AGVs. They used the concept of a time window graph in
which a node represents a free time window and an arc represents the reachability
between two free time windows. Because the algorithm finds a route through the
free time windows in the graph and because the route is conflict-free, deadlocks
between AGVs are avoided. Möhring et al. (2004) proposed a conflict-free routing
algorithm for AGVs in ACTs, which is based on the studies by Kim and Tanchoco
(1991, 1993).

Fanti et al. (1997) defined deadlocks and derived necessary and sufficient
conditions for a deadlock occurrence in case that a job occupies a single resource at

A        B

C D

Block

Fig. 3 Travel routes in front of a block
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a specific moment in time. Fanti (2002) applied this general concept to the zone
control scheme for the traffic control of AGVs.

Compared to the number of studies on deadlocks of AGVs in manufacturing
applications, there have been fewer studies of transportation centers, such as
container terminals. Rajeeva et al. (2003) addressed the deadlock problem of
AGVs in ACTs. Rajeeva et al. assumed a unidirectional guide-path network and a
yard layout in which the yard cranes travel parallel to the berths. Rajeeva et al.
proposed algorithms to anticipate and prevent deadlocks and conducted a
simulation study to verify the performance of the suggested algorithms. Evers
and Koppers Stijn (1996) suggested a traffic control method for AGVs by using the
concept of a “semaphore,” which represents the maximum capacity of a zone to
accommodate multiple AGVs at the same time. Duinkerken et al. (1999) proposed
a framework for the traffic control of AGVs called “TRACES” and provided the
results of a simulation study to demonstrate the validity of the framework. Vis and
Harika (2004) and Yang et al. (2004) compared performances of different types of
automated transport vehicles used in port container terminals. Grunow et al. (2004)
suggested a dispatching algorithm for AGVs with capacities of two loads in
container terminals.

This study is different from previous studies in that a vehicle is allowed to
occupy and reserve more than one grid-block at a time, whereas previous studies
assumed that a vehicle can occupy, at most, two adjacent zones. The next section
illustrates deadlocks and proposes a graphical representation of the reservation
schedule, which a vehicle has to construct while moving along its route. Section 3
proposes a method for detecting deadlocks by using the graphical representation of
reservations. A method to prevent deadlocks is also presented. Section 4 introduces
a simulation study conducted to evaluate the performance of the proposed method.
Section 5 improves the method of Section 3 by decomposing the traveling area into
multiple modules. Finally, concluding remarks are given in Section 6.

Fig. 4 An illustration of three different routes
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2 A graphical representation of reservations

When a route is assigned to a vehicle, the vehicle occupies a series of grid-block sets in
a sequence. To prevent collisions and deadlocks, a vehicle must reserve one or more
grid-blocks before occupying them in addition to the grid-blocks it occupies. Occupied
grid-blocks are those physically covered by an AGV (refer to Fig. 4). Reserved grid-
blocks are those that will be exclusively occupied by anAGV, and no otherAGVcan be
allowed to reserve or occupy these grid-blocks. If a vehicle cannot reserve its required
grid-blocks, the vehicle is not allowed to move to the next position. In that case, the
vehicle must wait until all the required grid-blocks become available for reservation.

Suppose that, in front of the transfer points of a block, three vehicles are
expected to pass the area as shown in Fig. 4. Then, the set of occupied grid-blocks
at each stage can be summarized as in Table 1. Each stage corresponds to a different
set of occupied grid-blocks (Table 1). For an AGV to travel a route, because a grid-
block can be occupied by only one AGV, the AGV must reserve new grid-blocks
whenever required. A reservation is necessary in the three following cases: new
grid-blocks are required for an AGV to move on these blocks (case 1); additional
grid-blocks are required between the position of an AGVand the position where the
AGV is supposed to stop, because time is needed for an AGV to come to a stop
(case 2); additional blocks must be reserved to prevent deadlocks (case 3), which is
the main issue of this study. Also, grid-blocks must be released for reservation by
an AGV as soon as they become unoccupied. Table 2 illustrates how grid-blocks
are reserved and released according to the reservation requirements for case 1.
Occupied grid-blocks must also include the blocks required for case 2, as well as
those for case 1, although Table 1 does not include them. Inclusion of grid-blocks
for case 2 into occupied blocks does not change the discussion in the following.

This paper suggests a directed graph model in which a node denotes a stage of a
vehicle during travel. Figure 5 illustrates a node representing a stage that a vehicle
passes through while in transit. The route of a vehicle can be represented by a series
of stages. The attributes of a stage consist of the sets of reserved grid-blocks, grid-

Table 1 Occupied grid-blocks in stages of three routes

Stages (i) Route s Route t Route r

1 50 49 33, 34, 35
2 41, 50 40, 49 33, 34
3 32, 41, 50 31, 40, 49 32, 33, 34
4 23, 32, 41 22, 31, 40, 49 31, 32, 33
5 14, 23, 32, 41 22, 31, 40 31, 32
6 14, 23, 32 13, 22, 31, 40 30, 31, 32
7 13, 14, 23, 32 13, 22, 31 29, 30, 31
8 5, 13, 14, 23, 32 13, 14, 22, 23, 31 29, 30
9 4, 5, 13, 14, 23, 32 14, 22, 23, 31
10 4, 5, 13, 14, 23 22, 23, 31
11 4, 13, 14, 23 22, 23
12 13, 14, 23 22, 23, 24
13 13, 14
14 12, 13, 14
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blocks to be reserved, and grid-blocks to be released. The grid-blocks listed as “to be
released” are those that will be released from the reservation once the AGVenters
the next stage. The grid-blocks listed as “reserved” are those that have been
successfully reserved. Because a vehicle can only occupy grid-blocks it has
successfully reserved, grid-blocks that are occupied by a vehicle have already been
reserved by the vehicle. The grid-blocks listed as “required for reservation” are
those for which reservations are required for the vehicle to proceed to the next stage.

A directed arc is connected from one node to another when the former has a
grid-block as “required for reservation” and the latter has the same grid-block as
“reserved.” However, if a grid-block exists that is listed as “reserved” in both the
nodes, then no arc can be drawn between them. Because no grid-block listed
“reserved” is shared between two nodes connected by an arc, two vehicles can be
simultaneously in the states represented by the two nodes. Also, because the
vehicle in the state of the latter node has already reserved a grid-block which is
required for the vehicle in the state of the former node, the vehicle of the former
node cannot proceed to the next stage unless the vehicle of the latter node moves to
another state in which the grid-block is released.

Table 2 Reservation required for an AGV to travel on route s

Stage Occupied grid-blocks Grid-blocks required for reservation Grid-blocks to be released

1 50 41
2 41,50 32
3 32, 41, 50 23 50
4 23, 32, 41 14
5 14, 23, 32, 41 41
6 14, 23, 32 13
7 13, 14, 23, 32 5
8 5, 13, 14, 23, 32 4
9 4, 5, 13, 14, 23, 32 32
10 4, 5, 13, 14, 23 5
11 4, 13, 14, 23 4
12 13, 14, 23 23
13 13, 14 12
14 12, 13, 14

Reserved grid-blocks
(Ssj)

Grid-blocks
required for 
reservation 
(Qsj)

Grid-blocks
to be 
released 
(Lsj)

Fig. 5 Node in the reservation graph
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Routes s and t in Table 1 are scheduled to enter to the area in Fig. 4. Also,
assume that each vehicle in a stage only reserves the grid-blocks that are necessary
for the next stage; that is, only the grid-blocks needed for case 1 are reserved. Then,
the reservation schedule of the two vehicles can be drawn as shown in Fig. 6.

Figure 7a illustrates a deadlock situation. AGV 1 attempts to reserve grid-block
B for a left turn, whereas AGV 2 attempts to reserve grid-block A for a right turn.
Because grid-block A is already reserved by AGV 1 and grid-block B is in the set
of reserved grid-blocks of AGV 2, an arc must be drawn from the node for the
current stage of AGV 1 to that of AGV 2, and another arc must be drawn in the
opposite direction as shown in Fig. 7b. Notice that the graph has a cycle, which
implies that the two AGVs are in a deadlock state. Thus, to check whether multiple
reservation schedules may cause a deadlock, it is necessary to check whether cycles
exist in the reservation graph.

Once a reservation graph is constructed, it is possible to detect possible
deadlocks by identifying cycles in the reservation graph. To find cycles in the
graph, an algorithm to find components that are strongly connected may be used
(Aho et al. 1974). The two following properties are obvious, considering how
reservation graphs are constructed.

Property 1 If there exists no cycle in a reservation graph, then the corresponding
schedules are deadlock-free.
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Fig. 6 A reservation graph for routes t and s in Table 1

Fig. 7 An illustration of a deadlock
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Property 2 If there is no cycle in which the number of nodes is not greater than the
number of schedules in a reservation graph, then the schedules are deadlock-free.

The number of schedules in a reservation graph corresponds to the number of
AGVs. A deadlock occurs when there is an AGV in every state represented by
nodes on the cycle in the reservation graph. If the number of AGVs is smaller than
the number of nodes on the cycle, then the deadlock that is represented by the
corresponding cycle cannot occur.

3 A method for preventing deadlocks

This section proposes a method to prevent deadlocks between AGVs. The
following notations will be used:

m The number of routes under consideration
nt The number of stages on route t, which is known when a route is selected

for a vehicle. Table 1 shows that routes s, t, and r have 14, 12, and 8 stages,
respectively

Otj The set of occupied grid-blocks at stage j of route t. Ot ntþ1ð Þ ¼ ∅
Ssj The set of reserved grid-blocks at stage j in the schedule for route s. Ss0=∅
Qsj The set of grid-blocks for which a reservation is requested at stage j in the

schedule for route s. When a grid-block is requested for reservation at
stage j, it will be included in Ss(j+1), Qs0=∅

Lsj The set of grid-blocks for which releases are requested at stage j in the
schedule for route s. When a grid-block is requested for release at stage j, it
will not be in Ss(j+1), Ls0=∅

a(si)(tj) The directed arc from node (si), which represents stage i in the schedule
for route s, to node (tj) on a reservation graph. A directed arc is connected
from node (si) to node (tj) if there exists a grid-block, g, such that g∈Qsi,
and g 2 Stj, and Ssi∩Stj=∅

The statement Ssi∩Stj=∅ implies that two vehicles can be at stage i of route s
and state j of route t at the same time, respectively. The statement that there exists a
grid-block, g, such that g∈Qsi and g∈Stj implies that a vehicle at stage i of route s
cannot proceed to the next stage as long as another vehicle remains at stage j of
route t. Grid-block g is said to precede grid-block q if g∈Ssi and q∈Qsi at node (si)
and is represented as g→q. The fact that g→q implies that grid-block g was
reserved earlier than grid-block q.

Let P be a set of precedence relationships (P={(a→b)}). Note that (a→b) and
(b→a) cannot be in the same set P, simultaneously. The precedence relationship is
transitive, that is, the fact that g1→g2 and g2→g3 implies that g1→g3. That is, if
(a→b)∈P and (b→c)∈P, then (a→c)∈P. The following property is useful for
constructing deadlock-free routes for AGVs:

Property 3 If there exists a set of precedence relationships in which all the
precedence relationships among grid-blocks in multiple schedules are included,
then the multiple schedules are deadlock-free.

Proof In a reservation graph, by definition of an arc, a directed arc is the
connection between two nodes when one node lists a grid-block as “required for
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reservation” and that grid-block already been reserved by the other node. The grid-
block is called a “connecting grid-block.” We define a grid-block, g, as preceding
grid-block q if g∈Ssi and q∈Qsi at a node (si). Thus, if there exists a cycle of length n
in a reservation graph, then we can find a series of connecting grid-blocks, (g(1),
g(2),…, g(n)), each of which corresponds to a node in the order of the directed cycle.
Because g(i) is included in Ss(i+1) and g(i+1) is included in Qs(i+1), g(i) must precede
g(i+1). However, because there is also a directed arc from node (n) to node (1) in the
cycle, g(n) must precede g(1) again, which is a contradiction. Thus, if there is a cycle
in a reservation graph, then no set of precedence relationships (P) can exist which
will satisfy the precedence relationships among grid-blocks in the reservation
graph. Thus, the conclusion holds, QED.

3.1 A deadlock-free reservation scheduling (DFRS) method

Whenever an AGV begins moving, a reservation schedule for its route is
constructed. At the moment, reservation schedules for other AGVs may already be
being implemented. The scheduling method in this section is used to add a
reservation schedule for a new AGV to the existing reservation graph so that
deadlocks are prevented. This approach is practical considering that the algorithm
in this paper must be implemented in real time and the revision of the schedules for
previously arrived vehicles may be time-consuming.

The method in this section maintains a set of precedence relationships (P),
creates a new node in a way that no precedence relationship among grid-blocks in P
is violated, and adds new precedence relationships into P whenever a new node in
the reservation graph is created. New nodes in a reservation schedule are created in
chronological order.

For example, to construct node (tj), we have to determine Stj, Ltj, and Qtj.
However, Stj and Ltj depend on already known data as follows: Stj ¼ St j�1ð Þ [ Qt j�1ð Þ
and Ltj ¼ Ot jþ1ð Þ � Otj: Thus, we only have to determine Qtj to construct node
(tj). The current P satisfies all the precedence relationships among blocks in
schedules 1, 2, …, t−1 and the partial schedule from node 1 to node j−1 of
schedule t. When we insert a grid-block (let it be grid-block u) into Qtj, we have to
find additional grid-blocks (let the set of these grid-blocks be denoted by “V”) to be
inserted into Qtj together with grid-block u. A grid-block v in V satisfies the

following conditions: (1) (v→u)∈P, and (2) ν ¼ Snt
k¼jþ2

Otk � Stj [ Qtj

� �
. Condition 2

means that grid-block v is included in neither Stj nor Qtj under construction.

However, because ν ¼ Snt
k¼jþ2

Otk; grid-block v must be reserved for future

occupation. This means that, if grid-block v is not reserved at this stage, the
precedence relationship (u→v) results. From conditions 1 and 2, if grid-block v is
not reserved at this stage, two conflicting precedence relationships result, which
implies a deadlock. Qtj is constructed in a way of satisfying the precedence
relationship among grid-blocks not only in schedules 1, 2, …, t−1, but also in the

252 K. H. Kim et al.



partial schedule from node 1 to node j−1 of schedule t. For example, when an AGV
travels onto a bidirectional spur, because the AGV must go into the end of the spur
and then come back from the end, we can expect conflicts among multiple grid-
blocks in the precedent relationship. In this case, all the grid-blocks in the spur must
be reserved simultaneously. This way of reservation prevents other AGVs from
entering the spur until all the grid-blocks in the spur are released.

The set of precedence relationships includes records, which represent a
precedence relationship between two grid-blocks and consist of the ID number of

Table 3 P after the reservation schedule for route s (Fig. 4) is constructed (v→u)

Route ID v u Case

s 50 41 1
s 41 32 1
s 50 32 1
s 32 23 1
s 41 23 1
s 50 23 1
s 23 14 1
s 32 14 1
s 41 14 1
s 50 14 2
s 14 13 1
s 23 13 1
s 32 13 1
s 41 13 2
s 50 13 2
s 13 5 1
s 14 5 1
s 23 5 1
s 32 5 1
s 41 5 2
s 50 5 2
s 5 4 1
s 13 4 1
s 14 4 1
s 23 4 1
s 32 4 1
s 41 4 2
s 50 4 2
s 4 12 2
s 5 12 2
s 13 12 1
s 14 12 1
s 23 12 2
s 32 12 2
s 41 12 2
s 50 12 2
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the corresponding route, a grid-block with higher precedence, and a grid-block
with lower precedence. When a vehicle completes its route, all of the records with
that route ID are deleted from P.

Suppose that t−1 vehicles have already started their routes and a reservation
schedule has been made for the tth AGV. This reservation schedule can be
constructed as follows:

Step 0: j=0.
Step 1: j=j+1. If j>n t, then stop. Otherwise, set Stj ¼ St j�1ð Þ þ Qt j�1ð Þ � Lt j�1ð Þ,

Qtj ¼ Ot jþ1ð Þ � Stj; and Ltj ¼ Otj � Ot jþ1ð Þ . If Qtj=∅, then go to the
beginning of this step. Otherwise, for all the pairs, (u, v), such that u∈Stj
and v∈Qtj (case 1), insert (t, u→v) into P. Add the precedence relationships
resulting from the transitive property and the route ID of t into P (case 2).
Set U=Qtj. Go to step 2.

Step 2: If U=∅, then go to step 1. Otherwise, arbitrarily select u from U and check
whether any v exists such that v∈V and (s, v→u)∈P for some s, 1≤s≤t,

where V ¼ Snt
k¼jþ2

Otk � Stj [ Qtj

� �
. Let the set of v satisfying the above

conditions be V*. If V*=∅, then go to the beginning of this step.
Otherwise, for all v*∈V*, set U ¼ U þ v�f g and Qtj ¼ Qtj þ v�f g: For
all r∈Stj, insert (t, r→v*) into P (case 3). Add the precedence relationships
resulting from the transitive property and the route ID of t to P (case 2). Set
U=U−{u} and go to the beginning of this step.

Table 4 An illustration of the reservation scheduling for route t

Stage
(j)

Stj Qtj New entries v→u Ltj u V V*

1 {49} {40} 49→40 ∅ 40 {31,22,13,14,23,24} ∅
2 {40,49} {31} 40→31, 49→31 ∅ 31 {22,13,14,23,24} ∅
3 {31,40,49} {22} 31→22, 40→22

49→22
∅ 22 {13,14,23,24} ∅

4 {22,31,40,49} ∅ {49}
5 {22,31,40} {13} 22→13, 31→13

40→13, 49→13
∅ 13 {14, 23, 24} {14,

23}
5 {22,31,40} {13,

14,
23}

22→14, 31→14
40→14, 49→14
22→23, 31→23
40→23, 49→23

∅ 14,
23

{24} ∅

6 {13,14,22,23,31,40} ∅ {40}
7 {13,14,22,23,31} ∅ {13}
8 {14,22,23,31} ∅ {14}
9 {22,23,31} ∅ {31}
10 {22,23} {24} 22→24, 23→24,

31→24, 40→24,
49→24

∅ 24 ∅ ∅

11 {22,23,24} ∅ ∅
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Table 3 shows P after the reservation schedule for route s (Fig. 4) has been
constructed.

Grid-blocks v* in V* in step 2 are those that will produce a cycle in the
reservation graph unless they are reserved together with grid-block u. Because we
assume that the reservation schedule for route s was constructed first, there is no
possibility of a deadlock. Thus, the reservation schedule can be constructed by
reserving only the grid-blocks required to travel route s and releasing the grid-blocks
that an AGVactually releases while travelling its route as shown in Table 2.

Under the condition that a vehicle on route s has already begun its route, when a
new vehicle with route t tries to begin its route, a new reservation schedule is
constructed, as shown in Table 4, and new precedence relationships are added to P,
as shown in Table 5. Note that, when grid-block 13 is reserved for an AGV, grid-
blocks 14 and 23 must be reserved at the same time to prevent a deadlock with an
AGV travelling on route s.

4 A simulation study to evaluate the performance of DFRS

A simulation study was conducted to evaluate the performance of the reservation
scheduling algorithm used in this paper. The container terminal is assumed to have
three QCs and seven yard blocks, as shown in Fig. 1. Each AGV lane allows travel

Table 5 The precedence table after constructing the reservation schedule for route t

Route ID v u Case

t 49 40 1
t 40 31 1
t 49 31 1
t 31 22 1
t 40 22 1
t 49 22 1
t 22 13 1
t 22 14 3
t 22 23 3
t 31 13 1
t 31 14 3
t 31 23 3
t 40 13 1
t 40 14 3
t 40 23 3
t 49 13 2
t 49 14 2
t 49 23 2
t 22 24 1
t 23 24 1
t 31 24 2
t 40 24 2
t 49 24 2
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in a predetermined direction. When an AGV travels in a straight lane, its speed is
6.5 m/s, whereas, when an AGV turns, its speed is reduced to 2 m/s. The simulation
program was developed using Visual C++.

Because no previous algorithm was found to resolve deadlocks in this situation,
we compared the algorithm in this paper with a simple reservation method (SM).
SM reserves a specified number (α) of grid-blocks, which will be occupied in the
future. However, when an AGV is traveling toward a transfer point in front of a
block, approaches a turning point from a running lane to go to the transfer point,
and arrives at the position where a specified number (β) of grid-blocks remain
before the turning point, SM reserves all the grid-blocks through to the transfer
position. When the AGV leaves the transfer point, SM reserves all the grid-blocks
from the transfer point to the last grid-block on which the AGV will turn. α and β
will be called the number of grid-blocks for advanced reservation when traveling in
a straight lane and turning, respectively. After an AGVarrived at its destination, its
next destination was generated randomly. The simulation program was run on a
Pentium IV processor with 1.7 GHz and 512 MB of memory.

We could not find a simple method to determine the values of α and β to
guarantee the deadlock-free operation of AGVs in a given operating situation.
Thus, simulation studies were conducted to find the minimum values of α and β in
which AGVs can travel without deadlocks. While increasing the values of α and β
one by one, the simulation was conducted until the values of α and β for which no
deadlock was observed were found. Table 6 shows the percentage of simulation
runs during which deadlocks occurred before the number of trips reached 300. For
each combination of α and β, the simulation was conducted 20 times. When α=3
and β=7, no deadlock was found during the simulation run. Thus, as a reference
rule, the rule of SM 3/7 was used in the following comparisons.

To compare performances of DFRS, which is the deadlock-free reservation
scheduling method in this study, with those of SM 3/7, a simulation study was
conducted. Delivery orders were randomly generated between positions of QCs
and transfer points of blocks. During the simulation study, the number of AGVs
was changed from six to 16. The simulation run was repeated ten times for each
condition. Figure 8 compares the average speed of the AGVs in SM 3/7 and DFRS.
The simulations using DFRS showed that the AGVs traveled, on average, 9.3%
faster than those on SM 3/7 because there were fewer blockages on DFRS.

Figure 9 compares the average percent of the time that an AGV was blocked by
other AGVs during a trip from its starting position to its destination, which we call
“blocked time.” For both reservation methods, the average percent of the blocked
time increased as the number of AGVs increased. However, the average percent of
the blocked time was much lower for DFRS than for SM 3/7.

Table 6 The number of reserved grid-blocks in SM and the percentage of simulations with
deadlocks

No of grid-blocks for
advanced reservation during
running/turning (α/β)

SM 3/7 (%) SM 2/2 (%) SM 3/3 (%) SM 4/4 (%) SM 5/5 (%)

No of AGVs 8 0 50 50 50 70
16 0 70 70 70 80
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The yard space needed for AGV movement is another important resource that
must be utilized efficiently. The amount of space used by an AGV can be
determined by multiplying the amount of space an AGV reserves by the duration of
the reservation. The average reservation space per unit time was evaluated by
summing the amount of space used by all the vehicles, and then dividing the sum of
travel times of all the vehicles. Figure 10 compares the average amount of space per
unit time thatDFRS and SM 3/7 reserved. Figure 10 shows that, as a whole, SM 3/7
used more than twice the space that DFRS used.

5 Partitioning traveling area to increase the utilization of space

In the previous section, DFRS considered all of the precedence relationships
between all of the grid-blocks for all moving vehicles when scheduling a
reservation for a newly dispatched vehicle. However, suppose that two different
vehicles pass through the same area at very different times, so that there is no
possibility for the two vehicles to be in the area at the same time. Then, when
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Fig. 8 Comparison of the average speed of AGVs
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Fig. 9 Comparison of the average percent of blocked time of AGVs
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constructing the schedule for one vehicle, it is not necessary to consider the
precedence relationships between the grid-blocks reserved for the route of the other
vehicle. In this sense, DFRS reserves more grid-blocks than is necessary to prevent
deadlocks. That is, the method in this is a little restrictive because the time is not
considered in the set of the precedence relationship (P). However, considering the
time for constructing P will make the algorithm too complicated. To resolve this
problem, a method to partition the apron area for AGV travelling into multiple
modules is proposed in this section. One set of precedence relationships is
maintained for each module and the set is updated only when a vehicle enters or
departs that module. Thus, the set of the precedence relationships for a module
considers the reservation schedules only for vehicles passing through that module.
This method should result in improved utilization of space and higher vehicle

Module1 Module2 
Module3

Module4 Module5 Module6 Module7 

Module8 Module9 Module10 Module11 Module12 Module13 Module14 

Module15 Module16 Module17 Module18 Module19 Module20 Module21
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Fig. 11 Partitioning of the traveling area into modules
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Fig. 10 Comparison of the average reserved space per unit time
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speeds. This method is a compromise between the complexity of considering the
time for constructing P and the restrictiveness of the algorithm in Section 3.

Figure 11 illustrates an apron area for AGV travelling, which consists of 21
modules. The width of a module equals the width of a yard block, which was 42 m
in the assumed layout. The lengths of a module under QCs and in front of each yard
block equal the total width of AGV lanes under QCs (36 m) and that in front of a
yard block (20 m), respectively. However, adjacent modules overlap each other, as
shown in Fig. 12. The overlapping areas were used to prevent deadlocks on girds
near the borders between two adjacent modules. Before a vehicle reaches position
A, the reservation schedule of the vehicle included grid-blocks only in module 1,
and this schedule only considered the value of P for module 1. However, after the
vehicle entered the overlapping area and before it reached position C, the
reservation schedule of the vehicle included grid-blocks in both modules 1 and 2,
and the schedule considered not only the value of P for module 1 but also that for
module 2.

When a vehicle enters a module, a new reservation schedule for the vehicle is
constructed considering the value of P for the module, and updates the value of P
for the module at the same time. When a vehicle departs a module, all the
precedence relationships with the ID number of the corresponding route are deleted
from P. The procedure to construct the reservation schedule is similar to that in the
previous section, except that a P is maintained for each module. The deadlock-
prevention algorithm in this section is called “modified DFRS.”

The modified DFRS algorithm in this section was compared with DFRS in the
previous section by a simulation study. The various conditions for the experiment
were the same as in the experiment of the previous section. Figure 13 compares the
average velocity of vehicles for different numbers of AGVs assigned to each QC,
when the two deadlock prevention algorithms were used. The average speed of the
vehicles was higher when the modifiedDFRSwas used than whenDFRSwas used.

Figure 14 compares the average percent of blocked time during the travel from
a starting position to an arrival position for the two deadlock prevention algorithms.
The average blocked time was lower when the modifiedDFRSwas used than when
DFRS was used. Figure 15 compares the average reserved area for both deadlock
prevention algorithms, which shows the modified DFRS utilizes the space more
efficiently than DFRS.

Figure 16 shows the average computational time required to schedule a trip for
an AGV when DFRS and modified DFRS are used. The computational time
increased as the number of AGVs increased. When DFRS was used, as the number

Fig. 12 An AGV crossing a border between modules
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of vehicles increased, the average computational time for scheduling a route
increased significantly, as shown in Fig. 16. The computational time averaged 2.8 s
for 16 AGVs, which is a long time for use in real time. The computational time was
about 1 s when the modified DFRS was used. The value for the modified DFRS
represents the average computational time for scheduling a route within a module.
The computational time for the modified DFRS seems to be much shorter than that
for DFRS.

The second simulation study was done by using a more realistic model. As in the
first simulation study, the layout in Fig. 1 was assumed. However, unlike the first
simulation study inwhich the delivery orderswere issued randomly betweenQCs and
blocks, the second simulation model described all the detailed operations in container
terminals. Based on the arrival data of four vessels, containers for receiving,
delivering, unloading, and loading were generated. The simulationwas conducted for
the unloading and loading operations of four vessels, with 1,480 unloading moves
and 1,280 loading moves in total. For locating outbound containers, it was attempted
to cluster containers with similar attributes in positions close to each other. For
locating inbound containers, congestions in the transfer positions of the yard blocks
were considered as having the highest priority. For dispatching vehicles, balancing
loads between different yard blocks was emphasized.

Fig. 14 The average percent of blocked time of vehicles
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Fig. 13 The average speed of AGVs
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Table 7 summarizes the results of the experiment. The average speed of
vehicles for different numbers of vehicles per QC was between 3.7 and 4.7 m/s.
The average number of grid-blocks, which are reserved for preventing the
deadlocks, divided by the total number of grid-blocks reserved was about 0.28–
0.64%. This result implies that the number of grid-blocks to be reserved for the
purpose of preventing deadlocks is very small compared with the number of grid-
blocks to be reserved for preventing collisions among vehicles. As long as the
number of AGVs assigned to a QC increased from 8 to 14, the average
computational time to construct a reservation schedule stayed below 1 s. Although
the productivity of the unloading and loading operations not only depends on the
reservation scheduling algorithm but also on other operation rules for AGVs,
including the dispatching rule and the routing rules, as the number of AGVs
increased, the productivity of the loading operation did not show much change,
while the productivity of the unloading operation increased slowly. Instead, as the
number of vehicles assigned to a QC increased, the average service time of road
trucks, which is the duration of stay of trucks at yard blocks for the service,
decreased significantly.

Computational  time (sec)
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Fig. 16 The average computational time to schedule a trip
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Fig. 15 The average reserved space

261Deadlock prevention for automated guided vehicles in automated container terminals



The second simulation study, which was done by using a more realistic model
than that for the first simulation study, showed more promising results for the
reservation scheduling method in this paper to be used for preventing deadlocks in
real situations.

6 Conclusion

This paper addresses the operational problem of AGVs in container terminals. The
number of AGVs used in container terminals is usually large (more than 50 or 60)
and AGVs are larger than those used in manufacturing systems. Thus, controlling
AGV traffic has been an important issue. This paper proposes deadlock detection
and prevention algorithms for AGVs. It was assumed that vehicles reserve grid-
blocks in advance to prevent collisions and deadlocks among AGVs.

A graphic representation method, called the “reservation graph,” was proposed
to express a reservation schedule in such a form that the possibility of a deadlock
can be easily detected. A method to detect possible deadlocks by using the
reservation graph was suggested. Also, a DFRS was proposed, which used a
precedence relationship between the grid-blocks. The DFRS schedules the
reservation for an AGV in a way such that the schedule does not violate the
precedence relationships that have already been developed for other schedules.

A simulation was conducted to evaluate the DFRS in this study. The DFRS was
compared with a heuristic rule for reservation scheduling (SM 3/7), in which a fixed
number of grid-blocks are reserved whenever a new reservation is necessary. It was
found that DFRS outperformed SM 3/7 in the average speed of AGVs, the average
time AGVs were blocked per trip, and the amount of area reserved for the routes.

DFRS was modified to utilize space more efficiently. The modified DFRS
partitioned the apron area for AGV traveling into multiple, smaller-sized modules
and constructed a reservation schedule whenever a vehicle entered a module. When
a reservation schedule was constructed for a vehicle, only the priority relationships
for the grid-blocks in that module were considered. A simulation study showed that

Table 7 Results of the second simulation study

No of AGVs per QC

8 10 12 14
Average speed (m/s) 4.79 4.55 3.92 3.70
Average percent of blocked time (%) 13.2 20.3 25.6 30.1
Average percent of grid-blocks reserved for preventing
deadlocks (%)

0.28 0.49 0.64 0.64

Average computational time for constructing a schedule (s) 0.84 0.86 0.88 0.90
Average no of loadings per hour per QC 25 27 27 26
Average no of unloadings per hour per QC 26.5 28.5 29 29
Average truck service time (s) 480 455 430 400
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the modified DFRS had higher travel speeds, shorter blocked times, and better
space utilization than the original DFRS.

DFRS was tested in a simulation environment that was similar to real ship
operations in practice. The simulation study showed that the modified DFRS is
satisfactory from the viewpoint of the average speed of vehicles, the space
utilization, and the computational time, which implies that the algorithm has
potentials to be used in practice.
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Dirk C. Mattfeld . Holger Orth

The allocation of storage space
for transshipment in vehicle distribution

Abstract We address the planning of transportation and storage capacity over
time. In intermodal transshipment terminals, finished vehicles are assigned to yard
locations for intermediate storage. The evolutionary algorithm proposed evolves a
period-oriented capacity utilization strategy. This capacity utilization strategy then
controls a construction heuristic which assigns vehicle movements to periods and
vehicles to storage locations. It is aimed at efficient operations and at a balanced
distribution of vehicle movements over the periods of the planning horizon.

Keywords Vehicle transshipment . Multi-period model . Task assignment .

Storage space allocation . Construction heuristic . Evolutionary algorithm

1 Finished vehicle transshipment

Automobile manufacturers aim at strategic competitive advantages by distributing
their activities around the globe (Spatz and Nunnenkamp 2002). The division of
automobile production entails an increased volume of vehicles shipped by means
of worldwide transportation networks. These networks are typically run by
logistics service providers consigned with the transportation, transshipment, and
storage of vehicles (Rodrigue 1999). Service providers aim at economies of scale
due to a consolidation of transport volume incurred on behalf of different vehicle
manufacturers (Tyan et al. 2003).

This has led to the emergence of inter-modal terminals at seaports, handling
enormous volumes of vehicles. Carriers operate at a liner schedule and call at
vehicle terminals at fixed points in time. Since the time for an oversea transport
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may take several weeks, the number of vehicles to be transshipped is pretty much
known in advance. Vehicles are transported in charges of a few dozens up to
hundreds or even thousands in rare cases. Vehicles of a charge have the same
destination and undergo an identical treatment concerning transportation and
transshipment.

The inter-modal split at a port necessitates an intermediate storage of vehicles at
a terminal. Import vehicles arrive by car-carrier and usually undergo an inspection
procedure before they are forwarded to the hinterland. This requires an
intermediate storage of vehicles. Export vehicles arrive via rail or feeder ship.
They typically stay at the terminal yard for the purpose of consolidation before they
are loaded onto car-carriers for oversea transport.

For each charge of vehicles, two relocations are considered: the storage from a
transfer point (quay, rail ramp, and truck yard) into a storage location and the
retrieval from a storage location to a transfer point. Since vehicles demand ground
storage, the extent of the storage yard required is remarkable. Vehicle movements
are performed by driving personnel, leading to a noticeable manpower demand.
The movement of a charge of vehicles is performed by a typically small group of
drivers. After every driver of a group has moved one vehicle, the group is picked up
by a taxi.

For drivers, the avoidance of damage is of top priority. Nevertheless, efficient
operations have to be ensured, which seemingly contradicts the principle of safety
and reliability. In order to achieve safe and reliable operations, it is aimed at
balancing the manpower demand over the planning horizon given in terms of
periods, i.e., two to three working shifts per day in the interval of 1 to 2 weeks. To
provide efficient operations, as a secondary goal, the sum of working hours needed
over the entire planning horizon is minimized.

To achieve these goals, two decisions are to be taken. First, storage locations for
the intermediate storage of vehicle charges are to be chosen. Second, a period for
the execution of a relocation is to be determined subject to a typically narrow time-
window given by the customer, i.e., the vehicle carrier.

The transport distance within the terminal is a crucial issue for planning. In
order to minimize the sum of working hours for the driving personnel, the location
with the smallest sum of storage and retrieval distance will be chosen. However,
one may accept a longer driving distance for storage operation in periods of small
to modest manpower utilization. This decision turns out advantageous if it yields
short retrieval distance for vehicles in a forthcoming period of congested
manpower utilization.

By performing storage operations early and retrieval operations late, the
average number of vehicles stored in the terminal becomes minimal. A small
utilization of the storage yard allows the greatest choice among storage locations,
supporting efficient operations that way. By assigning an earlier period of storage
and/or a later period of retrieval, the vehicles unnecessarily occupy storage space.
However, this option can support the balancing of the manpower demand over the
planning horizon. Thus, a decision is to be taken among conflicting options.

In this paper, a methodological support for terminal management is addressed
in order to provide both safe and efficient operations for real world-sized vehicle
transshipment problems. In Section 2, we review some related models. In
Section 3, we present a mathematical formulation of the problem. In Section 4, we
develop a construction heuristic and an evolutionary algorithm for the control of
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the construction heuristic. In Section 5, we perform a thorough computational
investigation. Finally, we conclude.

2 Space allocation problems

The application at hand can be modeled as a space allocation problem, which
considers the allocation of storage capacity to inventory with respect to
transportation effort (Kusiak 2000). McKendall and Jaramillo (2006) report on
the resource assignments of project activities in terms of a dynamic space
allocation problem. The authors focus on the assignment of resources to locations
over time with respect to minimizing the sum of the distances.

Literature concerned with space allocation in container transshipment stresses
the particularities of equipment handling (Steenken et al. 2004). The stacking of
containers decreases the storage space needed and, hence, also decreases the mean
transportation effort required. To the opposite, handling work increases in case of
stacking and, therefore, we observe a trade-off between the consumption of storage
space and the handling work required (Taleb-Ibrahimi and Castilho 1993). The
authors aim at calculating the minimum space required for a given transshipment
rate. Furthermore, the minimal handling costs can be obtained for a given storage
space. Both figures address strategic/tactic decisions only.

Preston and Kozan (2001) suggest optimizing the allocation of storage space at
an operational level such that setup times (synonymous for handling work) and
transport time become minimal. The authors use a genetic algorithm in order to
generate a sequence of geo-coordinates, at which containers are to be placed.
Stacking of containers is penalized by additional handling times, whereas
unnecessary detouring during container placements is penalized by additional
transport effort. The approach does not consider multiple periods of transshipment.

Time is incorporated implicitly by applying suitable rules for space allocation,
i.e., based on the duration of stay of containers in a yard (Kim and Park 2003). Bish
et al. (2001) make timing explicit by means of a (single period) scheduling model.
The authors minimize the time needed to unload a container ship under the
constraints of limited availability of storage areas and transport vehicles. The
model developed assigns container to storage areas and vehicles to containers.
Handling work is not considered in this rather simple model. Hartmann (2004)
suggests a general model to schedule operations at straddle carriers, automated
guided vehicles, stacking cranes, etc. A dispatching rule and an evolutionary
algorithm are proposed to solve these problems.

Zhang et al. (2003) propose two successive MIP formulations to be solved for a
multi-period problem. First, the workload is balanced over the storage areas
available before, second, the transportation effort is minimized. Workload can be
balanced between various periods by means of space allocation decisions. This
multi-period assignment problem is applied on the basis of a rolling time horizon
by currently adjusting the solution to forthcoming changing conditions. Murty et
al. (2005) propose to incorporate dynamic load attributes into space allocation
decisions.

However, space allocation approaches for container storage are fundamentally
different from those for vehicle storage at transshipment terminals. Handling work
is assumed constant and, therefore, just transport effort is to be minimized in
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storage space allocation models (see Mattfeld (2003) for an earlier work on this
subject).

Moreover, the balancing of workload is of first importance. Different from
container transshipment, where the buffering of containers at a marshaling area can
be used to balance workload over time, in vehicle transshipment such buffer
facilities do not exist. In order to avoid damages to vehicles, the number of vehicle
movements is to be kept at the absolute minimum.

In the space allocation for container transshipment, the control of individual
containers in a stochastic environment receives particular importance. In vehicle
transshipment, an identical treatment applies to typically hundreds of vehicles
grouped in a charge. Therefore, a charge can serve as an aggregate planning object
for optimization in a deterministic multi-period model (Mattfeld 2006).

3 Problem modeling

We consider a vehicle transshipment terminal consisting of a network of spatially
distributed storage locations of finite capacity interconnected by travel ways. This
network is extended by transfer points (i.e., quays, rail ramps, and truck loading
areas) depicting the origin and destination of vehicles. The manpower demand
required by the transport of vehicles is determined as a function of volume and
distance covered.

Services offered to customers comprise the transshipment of a charge of
vehicles from one transfer point to another. Customers do not necessarily insist on
the transshipment within a certain period but allow time-windows for both
relocation types, the storage into the terminal, and its corresponding retrieval.

Central to our approach is the notion of a task (Mattfeld and Kopfer 2003). A
task comprises the relocation of a charge of identical (assumed) vehicles, which are
treated as entity for planning. The vehicles belonging to a task are supposed to be
transported from an origin to a destination in a given, typically narrow, time-
window. We differentiate between “storage tasks” entering vehicles to the terminal
and “retrieval tasks” performing the vehicle dispatch from the terminal.

In order to model that the storage and retrieval may fall asunder, we consider the
transshipment of a charge of vehicles as a pair of storage and retrieval tasks coupled
by a precedence constraint. If intermediate storage is unavoidable, a storage
location of sufficient capacity is chosen.

If the time-windows for a pair of storage and retrieval tasks overlap, both tasks
are assigned to the same period and the vehicles are transshipped directly. This
allows a routing of vehicles through the terminal without taking the capacity
constraints of storage locations into account. Since storage space is a scarce
resource, a direct transshipment is performed whenever possible. We model this
case as a single transshipment task with a time-window covering the overlapping
periods of the storage and retrieval tasks.

The assignment of tasks to periods and the allocation of storage space for each
task have to be performed over the periods of the planning horizon. Thereby, the
deviation of the manpower demand over the periods is to be minimized while
keeping the overall manpower demand reasonably small. In the following, we
describe the problem resources before we discuss decision variables and related
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consistency conditions. Then, we turn to a description of the objective function and
the constraints involved.

3.1 Resources and variables

3.1.1 Storage locations and transfer points

We consider a terminal consisting of the set F ¼ f1; ::: ;mg of storage locations
and transfer points. For location i 2 F; Hi 2 fI; Eg denotes whether i is an
internal storage location (Hi ¼ I) with capacity Ki or an external transfer point
(Hi ¼ E ) without storage capacity. Let Kmin be the smallest storage location size to
be utilized, then

0 � Bi � Ki 8i 2 F with Ki
� Kmin; if Hi ¼ I

¼ 0; if Hi ¼ E

(

holds, with Bi being the initial inventory of location i.

3.1.2 Productivity measure

The production coefficientDi1i2 determines the driving time required for the relocation
of a single vehicle between location i1 and location i2 . In this way, Di1i2 provides a
manpower-oriented measure for the distance between i1 and i2. Di1i2 > 0 8i1; i2 2 F
with i1 6¼ i2 holds.

3.1.3 Tasks

A set A ¼ f1; ::: ; ng of tasks is to be assigned to the periods of the planning horizon.
A task j 2 A is labeled with jðYjÞ as one of three relocation types Yj 2 fS; R; Tg,
namely storage, retrieval, and transshipment.

A task j consists of volume Lj given in terms of the number of vehicles to be
relocated. A minimal task volume Lmin limits tasks to useful transshipment
operations, thus Lj � Lmin 8j 2 A . Lmin � Kmin holds; otherwise, storage location
i with Ki ¼ Kmin does not provide capacity for the smallest possible task volume
and is therefore not usable in any way.

Each task j consists of an origin qj 2 F and a destination zj 2 F: Newly
arriving vehicles typically have to be moved from their externally given transfer
point Qj to a storage location. The destination of a retrieval task is also a given
transfer point Zj: Note that capital letters Qj and Zj denote prescribed external
transfer points, whereas lower case letters indicate that the destination of a storage
task is not determined in advance.

The destination of a storage task zj can be freely chosen. However, the desti-
nation of a storage task zj and the origin of the corresponding retrieval task qj are
identical. To model this relation, we tie retrieval task j to its preceding storage task
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Vj: Thus, for a retrieval task j; qj ¼ zVj warrants that the internal inventory system
is kept consistent.

A direct transshipment is carried out from a given origin Qj to a given desti-
nation Zj and, therefore, no choice can be taken. In summary, the following con-
straints restrict the choice of locations:

8j 2 A with Y j ¼ S hold : qj ¼ Qj ;

8j 2 A with Y j ¼ R hold : qj ¼ zVj and zj ¼ Zj ;

8j 2 A with Yj ¼ T hold : qj ¼ Qj and zj ¼ Zj :

(1)

3.1.4 Discrete time model

Time is modeled as discrete periods. The transshipment of vehicles is planned up to
T periods in advance; t 2 f0; 1; ::: ; Tg addresses the period to consider.

3.1.5 Task-to-period assignment

For each task j;a period of processing sj 2 f1; ::: ; Tg has to be determined within
the planning horizon. The period sj of processing task j is constrained by a time-
window ½EETj; LETj
 between the earliest execution time EETj given and the
latest permissible execution time LETj. Moreover, the processing of retrieval task j
is restricted to periods after the processing of its corresponding storage task Vj, i.e.,
sVj þ 1 � sj holds. The temporal constraints implied by the planning horizon,
the time-windows, and the precedence relations existing are depicted by max

f1;EETj; sVj þ 1g � sj � minfLETj; Tg for all j considered.

3.1.6 Inventory holding

The storage yard will be utilized by vehicles at the beginning of the first period
considered t ¼ 1. The initial inventory Bi of a dedicated location i depicts the
vehicles stored at the fictitious period t ¼ 0. In order to retrieve the initially stored
vehicles, retrieval tasks without corresponding storage tasks may exist. For a
retrieval task j, this case is labeled with sVj :¼ 0.

The auxiliary variables lt;i determine the inventory of storage location i in
period t starting from its initial inventory Bi . The variables lt;i of location i are tied
in accordance to t by a dynamic inventory balance equation1:

l0;i ¼ Bi 8i 2 F;

lt;i ¼ lt�1;i þ
X
j
��Yj¼S
sj¼t
zj¼i

Lj �
X
j
��Yj¼R
sj¼t
qj¼i

Lj 8i 2 F; t ¼ 1; . . . ; T: (2)

(1)

1In the following, the notation “ ajb ” is used as abbreviation of “a with condition b”.
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Because capacity limitations have to be kept, lt;i � Ki holds for every i and t.
Since the terminal management will aim at a high utilization of the storage
resource, lt;i � Ki turns out to be a very important constraint.

3.1.7 Manpower planning

Moving one vehicle from qj to zj requires Dqjzj units of driving time. For the
relocation of Lj vehicles from qj to zj, time pj :¼ Lj � Dqjzj is required. The driving
time required in period t is determined by

pt ¼
P
jjsj¼t

pj ¼
P
jjsj¼t

LjDqjzj : (3)

The driving time pt is achieved by summing up all the time required for the
storage, retrieval, and transshipment tasks carried out in period t . Due to the
prescriptions with respect to origins and destinations given in Eq. 1, the terms of pt
can be distinguished as follows:

pt ¼ð3Þ
X
jjsj¼t

LjDqj zj ¼
ð1Þ X

j
��Yj ¼ S

sj ¼ t

LjDQjzj þ
X
j
�� Yj ¼ R

sj ¼ t

LjDzVj Zj
þ
X
j
�� Yj ¼ T

sj ¼ t

LjDQjZj : (4)

The mean of all pt over the planning horizon is given by �p ¼ T�1
PT

t¼1 pt.
Provided with a perfectly balanced workload over the periods, pt equals �p. The
maximal driving time is bounded by pmax; therefore, the feasible interval of pt is
integrated into the model for all t: pt � pmax.

3.2 Goals of operation

An evenly balanced workload over the T periods of the planning horizon is aimed
at. Thus, we look for a way to minimize the sum of deviations of the manpower
demand pt in period t to the mean demand �p ¼ 1=T

PT
t¼1 pt:

min
XT
t¼1

jpt � �pj : (5)

In periods with pt < �p; a raise of pt towards �p might be achieved by uselessly
allocating remote storage locations. The long distances to these remote locations
will enhance pt by larger driving times needed. In order to prevent this, we take
only positive deviations of pt to �p into account:

min
XT
t¼1

maxfpt � �p ; 0g : (6)
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Next to the balancing of workload, a minimization of the total driving time is
pursued. Notice that Eq. 6 does not aim at reducing �p because it will yield small
values as long as �p is large enough. To integrate the goal of minimizing driving
time, the term min

PT
t¼1 pt is added to Eq. 6. Consider that

1

T

XT
t¼1

pt ¼ �p )
XT
t¼1

pt ¼ T � �p ¼
XT
t¼1

�p:

Thus, min
PT

t¼1 pt corresponds to min
PT

t¼1 �p leading to the following function:

min
XT
t¼1

maxf pt � �p; 0g þ
XT
t¼1

�p ¼ min
XT
t¼1

maxf pt; �p g: (7)

The linear integration of the minimizing and balancing function terms achieves a
minimization of �p and of the deviation of pt from �p at the same time.

3.3 Objective function and constraints

The function deduced in Eq. 7 is minimized by aligning pt to �p at the smallest
achievable level. To achieve this goal, the objective function is set to

min
XT
t¼1

maxf pt; �p g: (8)

The constraints described in Section 3.1 apply:

maxf1;EETj; sVj þ 1g � sj � minfLETj; Tg 8j 2 A; (9)

lt;i � Ki 8i 2 F; t ¼ 1; . . . ; T; (10)

pt � pmax t ¼ 1; . . . ; T: (11)

Tasks j 2 A are fully determined by the attributes expressing how many
vehicles are relocated from where, whereto, and when, i.e., ðLj; qj; zj; sjÞ. From
Eq. 4 we see that Eq. 8 is determined by fixation of variables sj and zj. The former
variables determine a sequence of task operations whereas the latter variables
determine the allocation of storage space.

4 Algorithmic approach

The model proposed above requires a vast number of binary variables. Many
intricate constraints apply, which will prohibit the generation of optimal solutions
for reasonably sized real-world problems. In particular, dynamic inventory
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constraints as given in Eq. 2 will prevent the formulation of an efficient exact
algorithm (compare Neumann and Schwindt (1999); Laborie (2001) for earlier
work in this direction).

We propose a construction heuristic to be controlled on a period-based level
instead of focusing on the detailed level of the individual task. We formulate a
reasonable default heuristic (“greedy strategy”) and then allow variations from this
heuristic. For this purpose, parameters indexed by period t 2 1; . . . ; T control the
assignment of tasks to periods and the allocation of storage space. An evolutionary
algorithm is used to develop efficient “adaptive strategies” by setting the
parameters of the construction heuristic in a suitable way.

4.1 Overview

In the following, we propose a procedure controlled by a set of parameters allowing
for a variation from a default “greedy strategy”: performing storages into the yard at
the latest permissible period and retrievals in the earliest permissible period.
Choose a storage location of sufficient capacity such that the distance of storage
and retrieval is minimal. Avariation from this “greedy procedure” is defined in two
passes (illustrated in Fig. 1).

A greedy assigning of tasks to periods will lead to an unbalanced volume as
sketched in the uppermost histogram. In order to balance the volume, we filter the
task-to-period assignment by means of parameter αt. This filtering may lead to a
more balanced distribution of volume as it is sketched in the second histogram from
the top. On the left-hand side of Fig. 1, we depict this filtering in analogy to the
“funnel model” proposed by Wiendahl (1987) for the load-oriented production
control.

In the second pass, we consider the distribution of manpower instead of
volume. A balanced distribution of volume does not lead to a balanced distribution
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Fig. 1 Scheme of the two-pass construction heuristic
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of manpower in every case (compare the third histogram from the top of Fig. 1). An
uneven manpower distribution may be caused by a utilization of storage areas of
varying productivity coefficients.

This time, we filter with respect to the storage capacity by means of the
parameter βt modifying the selection of storage locations. We end up with
“capacitated tasks” in a hopefully well-balanced distribution of manpower as
depicted in the lowermost histogram.

Note that variations of α and β can be used in order to achieve the same effect
on the manpower utilization. Therefore, it depends on the problem at hand whether
a modification to α or β should be applied. However, the period assignment of a
task controlled by α has to be executed before the space allocation controlled by β
can be applied.

4.2 Task-to-period assignment

In a first pass, the tasks are assigned to periods. Parameter αt provides a way to
shift task volumes between periods in order to achieve balanced transshipment
volumes. Thereby, αt decides upon the number of optionally executable tasks to be
processed in period t. A large value of αt causes the execution of almost all
assignable tasks, whereas a small value of αt tends to defer assignable tasks to
forthcoming periods.

Set St contains all tasks assignable in period t, whereas set Rt � St contains
all tasks actually assigned to period t (S0 ¼ R0 ¼ ;). The assignment of tasks to
periods is performed for each consecutive period t ¼ 1; . . . ; T separately in three
steps.

1. A fraction L̂t of the optionally assignable volume in St is specified by αt 2
½0; 1
: The total volume of all tasks assigned to period t is limited by L̂t:X

j2Rt

Lj � L̂t with L̂t :¼ bαt

X
j2St

Ljc: (12)

In this way the manpower demand of period t is controlled indirectly by the
vehicle volume L̂t: As only exception, we consider tasks in St with LET ¼ t and
volume

P
jjLETj¼t Lj exceeding L̂t. In order to allow for the complete assignment

of this volume to t; constraint (12) is relaxed:X
j2Rt

Lj � max

�
L̂t;

X
jjLETj¼t

Lj

�
:

2. Optionally processable tasks for Rt are determined from St, which are ; for
αt ¼ 0 and St for αt ¼ 1: For αt 2 ð0; 1Þ; a subset of St is selected by means
of a utility function Φt;j for all j 2 St , i.e.,

Rt :¼ Φt;jðStÞ:
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3. Stþ1 is built from the backlog of tasks considered in St but not yet assigned in
Rt and then updated by tasks with an earliest processing time t þ 1, such that

Stþ1 :¼ St n Rt [ fj 2 AjEETj ¼ t þ 1g
holds and Stþ1 contains the assignable tasks for period t þ 1:

The specification of function Φt;j in step 2 remains as an open issue. Φt;j selects
tasks forRt � St with respect to period t and the maximal volume of transshipment
L̂t. All tasks with LETj ¼ t have to be assigned to t and, therefore, have to enter the
set of tasks assigned to period t , i.e., fj 2 StjLETj ¼ tg � Φt;jðStÞ.

We model the selection problem as a knapsack model, which maximizes its
total utility with respect to the constrained knapsack volume L̂t: For that purpose,
the utility of tasks has to be determined. To this end, a priority φt;j is assigned
to each feasible period of processing t for task j. Its value is determined by two
factors: firstly, by the impact on the capacity of the storage system and, secondly,
by the pressure of time caused by the time-windows imposed.

4.2.1 Impact on the storage system

The three types of tasks Yj are classified into priority classes in accordance with
their impact on the storage system. A transshipment does not alter the inventory
since no storage into or retrieval from a storage area takes place. Its priority class is
therefore set to default, which is used to initialize the classification process. A
storage task burdens the storage system with additional vehicles and is, therefore,
classified subordinate compared to a pure transshipment. We accordingly assign
the priority class low. A retrieval task disburdens the storage system and should be
preferred for that reason over a transshipment. We accordingly set its priority class
to high.

With respect to the impact imposed on the storage system, selectingRt from St

favors retrieval tasks over transshipment tasks and transshipment tasks over storage
tasks. SinceRt represents the faction αt of St, storage tasks tend to be deferred to
Stþ1; whereas retrieval tasks tend to be processed at the beginning of the time-
window.

4.2.2 Urgency of processing

The urgency of processing becomes greater with the progression of time regardless
of the type of task to perform. The deferment of a task increases the urgency of its
processing in the next period because the time-window remaining becomes smaller
with each deferment. If the processing of a task is deferred to its LET period, it has
to be executed unconditionally. The priority class maximal is introduced for tasks
with LET ¼ t. With progression of time, each type of task may pass through two
priority classes (refer to Table 1).
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Following the above scheme, the priority of storage and transshipment tasks is
raised drastically in the last possible period such that execution is warranted. To
achieve a more balanced distribution, in the following, we propose to raise the
priority in a stepwise fashion. The importance of urgency of processing is favored
over the impact on the storage system in order to allow a smoother raise of priority
towards maximal at LET : Table 2 depicts the class scheme obtained.

Since the priority class of tasks is raised with elapsing time, even tasks of low
priority become labeled for execution after waiting for a certain span of time.

4.2.3 Order of priority classes

By combining the impact on storage resources and the task urgency, a priority class
has been assigned to every task in every period (refer Table 2). To build an order,
the sequence of execution within a priority class has to be determined.

Provided that different types of tasks share a priority class in St; the impact on
the storage system decides upon the order of execution. The rank order induced is
taken as the basis for the assignment of priorities φt;j. Nine scenarios may occur,
which are distinguished as depicted in Table 3.

Priority φt;j is interpreted as the utility gained through the relocation of a
vehicle of task j in period t: The utility Φt;j of task j with volume Lj in period t is

Table 1 Scheme of priority classes

Type of task Yj Priority class

Tasks in LET Maximal
Retrieval up to LET � 1 High
Transshipment up to LET � 1 Default
Storage up to LET � 1 Low

Table 2 Assignment of tasks to priority classes in accordance with urgency

Type of task Yj Period sj Priority class

Retrieval Up to LET � 1 High
In LET Maximal

Transshipment Up to LET � 2 Default
In LET � 1 High
In LET Maximal

Storage Up to LET � 3 Low
In LET � 2 Default
In LET � 1 High
In LET Maximal
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determined by Φt;j :¼ φt;j � Lj: The utility values Φt;j of tasks are in N. The
knapsack problem can now be formulated with decision variable xj such that
Rt ¼ fj 2 Stjxj ¼ 1g constitutes a solution to the problem:

max
X
j2St

xjΦt;j; (13)

X
j2St

xjLj � max

�
L̂t;

X
jjLETj¼t

Lj

�
; (14)

xj 2 f0; 1g 8j 2 St: (15)

Equation 13 maximizes the utility while Eq. 14 depicts the capacity constraint.
Finally, Eq. 15 expresses the integer condition of the problem.

This MIP has been implemented using the software package lp_solve version
3.2. Solving a knapsack problem entailed from constructing a solution for one of
the test problems defined in Section 4 takes just a fraction of a second only. As the
construction heuristic requires to solve T ¼ 50 knapsack problems, solving each
problem to optimality may become computationally prohibitive when used as a
base heuristic inside an evolutionary algorithm (refer to Section 4.4. For the
computational investigation performed, the mixed integer formulation of the
knapsack problem is therefore replaced by a greedy heuristic task selection scheme
with almost no loss of solution quality.

4.3 Allocating storage space

This second pass allocates storage space for the tasks involved. Parameter βt allows
shifting of the manpower demand between periods by controlling the way storage
locations are chosen. Deciding upon the manpower demand of a storage task Vj, the
manpower demand of its corresponding retrieval task j is determined. Storage and
retrieval of a transshipment are performed in different periods t1 and t2 ; βt1 and βt2
determine the relative importance of saving manpower in t1 with respect to t2 and

Table 3 Rank order of scenarios

Priority class Task type Yj with sj �t;j

Maximal Retrieval in LET 9
Transshipment in LET 8
Storage in LET 7

High Retrieval up to LET � 1 6
Transshipment up to LET � 1 5
Storage in LET � 1 4

Default Transshipment up to LET � 2 3
Storage in LET � 2 2

Low Storage up to LET � 3 1
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vice versa. This way, parameter βt controls whether transports to nearby or remote
locations are preferably carried out in a period. The steps to perform are described in
the following:

1. The dynamic inventory balance equation (2) do not track inventory fluctuations
within a period. In order to comply with the consecutive space allocation of the
heuristic procedure with the model proposed in Section 3, for each period,
retrieval tasks are processed before storage tasks. Thus, storage space is always
freed before being reused.

2. To provide a (contingently feasible) solution in every case, a storage location i�
with unlimited capacity Ki� and extremely large production coefficient Di�i
with respect to all other locations i 2 F is provided in F� :¼ F [ fi�g. The
production coefficient of i� is set ten times larger than the mean of coefficients
observed in the storage system. In order to process storage task jðSÞ, internal
storage locations of sufficient capacity GjðSÞ :¼ fi 2 F�jKi � lsjðSÞ ;i � LjðSÞg are

identified.
3. A storage location for storage task jðSÞ with corresponding retrieval task jðRÞ is

determined by

zjðSÞ ¼ ij min
i2GjðSÞ

fβsjðSÞ
DQjðSÞ ;i

þ βsjðRÞ
Di;ZjðRÞ

g; βt 2 ½0; 1
 :

Whenever βsjðSÞ
¼ βsjðRÞ

for the period sjðSÞ and the period sjðRÞ , the efforts for

storage and retrieval contribute at the same rate and the location of sufficient
capacity with the smallest overall distance available is consequently chosen. In
case of a comparably larger βsjðSÞ

, the storage effort is favored over the retrieval

effort. As a consequence, a nearby location will be chosen at the expense of a
higher transportation effort for the corresponding retrieval task (and vice versa).
Figure 2 provides an example of the storage allocation scheme considering a
storage task with origin a to be executed in t ¼ 1 and its corresponding
retrieval task with destination d to be executed in t ¼ 2. In comparison to t ¼ 1,
manpower capacity is more constrained in t ¼ 2 expressed with β1 ¼ 0:4 and
β2 ¼ 0:8, respectively. Two storage locations, b or c, of sufficient capacity can
be chosen for intermediate storage. For the example, due to the setting of βt ,
location c is selected with mini2fb;cg fβ1 � Da;i þ β2 � Di;dg. In this case, min

fð0:4 � 4þ 0:8 � 1Þ; ð0:4 � 1þ 0:8 � 3Þg ¼ minf2:4 ; 2:8g ¼ 2:4 favors the al-
ternative with the larger sum of productivity coefficients because of the higher
relevance of manpower productivity in t ¼ 2:

4. Finally, inventory is tracked by freeing storage space lt;i :¼ lt;i � Lj in case of a
retrieval task and allocating space lt;i :¼ lt;i þ Lj in case of a storage task.

a b

c

d

Da,b = 1

Da,c = 4 Dc,d = 1

Db,d = 3

Fig. 2 Example of selecting a location
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4.4 An evolutionary algorithm approach

In the remainder of this section, we propose an integrative setting of αt and βt by
means of an evolutionary algorithm (EA). EAs are iterative stochastic search
methods based on the principles of natural evolution. General introductions to EAs
can be found, e.g., in Goldberg (1989) and Michalewicz (1996).

EAs can be applied independently from specific properties of the optimization
model. For parameter optimization problems, EAs evolve suitable parameter sets
with regard to the objective function value. The EA proposed in this research
adapts the capacity utilization strategy by means of the parameters αt and βt: The
construction heuristic proposed is integrated as a base heuristic in order to evaluate
the strategies evolved.

In order to evolve suitable strategies, a pretty standard EA design is taken from
the “Evolvable Objects” software library (Keijzer et al. 2001). To be specific, the
esea program provided with the library in version 0.9.3 is adopted for the
adaptation of a storage utilization strategy. Without performing any parameter
optimization in advance, the program has been configured with commonly
accepted parameter values:

– A real coded vector has been chosen for representation purposes consisting of αt

and βt of all t ¼ 1; . . . ; T periods. All vector elements cover the domain ½0; 1
.
– Mutations are applied at a rate of pm ¼ 0:2 and alter a vector element by

∈ ¼ 0:03 (see Bäck et al. 2000).
– A standard hypercube crossover produces superior results and is therefore

applied at a rate of pc ¼ 0:8 (see Booker et al. 2000).
– A population size of 200 individuals has been shown to work sufficiently well.

Four hundred offspring are produced and are subject to ðμ;λÞ replacement (see
Deb 2000).

– A generational reproduction model is run for 200 generations. The 400 � 200 ¼
80; 000 evaluations performed require approximately 30 s on a Pentium IV
2.6 GHz.

5 Computational investigation

In this section, we first introduce problem instances used for benchmarking. On
the basis of these instances, we compare results achieved by the “greedy strategy”
and the “adaptive strategy” and discuss the impacts for terminal operations
management.

5.1 Setting up problem instances

To investigate the algorithmic approach to the problem at hand, problem instances
are needed. An instance should be characterized by a few parameters meaningful to
the problem. To meet this requirement, we refrain from using real-world problems
and generate artificial problem instances instead. The detailed way of generating
test problems is described in the Appendix.
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For the problem instances, a storage system F ¼ f1; . . . ; 40g is used with 10
storage locations and 30 transfer points. The capacity Ki for a storage location is
drawn from a uniform distribution in ½100; 1900
: The total capacity of the storage
system is summed up to K̂ ¼ 13529.

All problem instances generated consist of T ¼ 50 periods with an intended
duration of storage ofΔ ¼ 8:0 time units. The task volumes Lj are generated from
a uniform distribution ½50; 250
 with mean �L ¼ 150: In accordance with Eq. 16,
the mean inter-arrival time �Λ is determined by ð150=13529Þ � 8:0 ¼ 0:088, such
that, per period, on average 0:088�1 ¼ 11:3 storage tasks are generated. As
retrieval tasks are produced reactively at the same rate, a problem consists of
approximately 22:6 � 50 ¼ 1; 130 tasks, diminished by the number of direct
transshipments.

For these problems, we prescribe different inventory levels and time-windows
of tasks in order to validate our algorithmic approach. We vary the overall
inventory level Γ 2 f0:8; 0:9; 1:0g to produce modestly to heavily utilized storage
systems. The mean extension of time-windows (given as a fraction of Δ ¼ 8:0) is
prescribed by Ω 2 f0:000; 0:250; 0:500g. For each combination of Γ and Ω, we
generate problems by varying the random seed Σ 2 f1; . . . ; 50g responsible for
the arrival process, the task volumes, and the choice of storage locations; thus, each
of the 450 test problems is uniquely referred to by ðΓ ;Ω;ΣÞ:

Table 4 shows the mean values observed over Σ ¼ 50 instances of an attribute
combination, i.e., the intended inventory level Γ and the extension of time-
windows Ω: Column �p refers to the mean manpower demand given in terms of

driving time. The standard deviation v :¼ T�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t ðpt � �pÞ2
q

provides a measure

Table 4 Results obtained for the “greedy strategy” and the “adaptive strategy”

� � ¼ 0:8 � ¼ 0:9 � ¼ 1:0

�p v �l �p v �l �p v �l

Greedy strategy
0.000 6591.5 1304.3 0.74 ð50 6849.7 1554.6 0.84 ð50 7304.5 1912.7 0.91 ð44

0.250 6284.2 1314.8 0.52 ð50 6436.1 1399.3 0.61 ð50 6537.2 1606.2 0.69 ð50

0.500 6114.9 1418.2 0.37 ð50 6245.3 1499.2 0.45 ð50 6344.3 1702.8 0.52 ð50

Adaptive strategy
0.000 6572.2 899.8 0.74 ð50 6763.8 1133.6 0.84 ð50 7127.5 1571.2 0.91 ð50

0.250 6346.2 575.2 0.71 ð50 6592.6 797.2 0.82 ð50 6950.2 1675.5 0.87 ð41

0.500 6149.0 580.3 0.64 ð50 6330.7 700.2 0.75 ð50 6547.4 1058.8 0.84 ð50

Each figure depicts the mean over 50 different problem instances solved for a combination of �
and�. Mean manpower demand �p, deviation of manpower demand v, and mean inventory level
observed l. The number of runs obtaining a feasible solution is given in braces
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for the balance of manpower over the periods considered. The mean overall
inventory level observed is given by

�l ¼ 1

T

XT
t¼1

�
1

K̂

X
i2F

lt;i

�
¼ 1

T � K̂
XT
t¼1

X
i2F

lt;i :

As the problems are generated by means of a simulation, the observed
inventory level �l is slightly lower than intended by Γ even for Ω ¼ 0:0. Another
reason for �l < Γ is the direct transshipment in the case of overlapping time-
windows.

Although each problem instance is solvable, a heuristic algorithm may not find
a feasible solution with respect to capacity constraints of the storage system. For
these cases, we provide an additional location i� which may be used at extremely
high costs (compare Section 4.3). If no feasible solution can be obtained, it is
omitted. The superscript at column �l denotes the number of feasible solutions
contributing to the figure.

5.2 Discussion of results

Let us start with a discussion of �l with respect to variations of Ω: As time-windows
expand with increasing Ω; direct transshipment become more frequent and the
utilization of the storage yard �l consequently decreases. This is particularly true for
the “greedy strategy”, whereas for the “adaptive strategy” �l decreases only gradually.

Recall that the latest-in-earliest-out rule for the execution of storage and retrieval
tasks forced by the “greedy strategy” ensures a minimal utilization of the storage
yard. The “adaptive strategy” applies variations to the above rule in contingently
performing an earlier storage and a later retrieval. This leads to increase of the overall
inventory level �l:

If applied in an intelligent way, the “adaptive strategy”will lead to a positive effect
on the manpower deviation v. At the same time, we can expect a deterioration of the
mean manpower demand �p because a large �l potentially restricts the choice of
suitable storage locations.

By comparing the “greedy strategy” and the “adaptive strategy”, we observe a
slight increase of �p and a strong decrease of v for Ω > 0. For modest inventory
levels Γ 2 f0:8; 0:9g, the improvements in manpower balancing are worth the
marginal losses concerning the overall manpower demand.

With Γ ¼ 1:0 and Ω ¼ 0:25, only for 41 of 50 problem instances has a feasible
solution been found. An increase of �l in the face of a heavily utilized storage system is
obviously not helpful at all. If �l is further decreased ðΩ ¼ 0:5Þ , the “adaptive
strategy” starts to work again in producing a superior manpower balance v.

Finally, we consider the absence of time-windows (Ω ¼ 0 ). Variations with
respect to the period of task execution cannot be applied and, therefore, the
inventory level �l is fixed. For these cases, we observe improvements for both,
�p as well as v. It is obvious that an intelligent choice of storage locations with
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respect to the current workload of the system can gain significant
improvements.

With Γ ¼ 1:0 , the “greedy strategy” generates a feasible solution for 44 out
of 50 problem instances. Vice versa, a variation of the choice of storage
locations due to parameter βt in the “adaptive strategy” is successful for all 50
instances.

In summary, the two goals, (a) manpower balancing and (b) manpower
minimization, do not necessarily conflict. The “adaptive strategy” can improve
transshipment operations to some extent by means of a load-oriented control of
the allocation of storage space.

Further significant improvements with regard to manpower balancing can be
obtained making use of time-windows. However, the negative side effect of the
additional inventory burden prevails in the presence of a high inventory level.
Thus, extending the duration of stay becomes a valid option for modestly
utilized storage yards only.

6 Conclusion

We have proposed a multi-period-capacitated transshipment problem to improve
the efficiency of operations for inter-modal vehicle terminals. For this problem, we
have developed an optimization model.

We have proposed an evolutionary algorithm evolving a capacity utilization
strategy with respect to the periods considered. The decisions concerning the
individual tasks are performed by a construction heuristic parameterized by a
capacity utilization strategy.

We have chosen a period-oriented control because of the large-size vehicle
transshipment problems tend to have in practice. We have investigated whether
improvements over a reasonable greedy strategy can be gained. The results
obtained render the approach powerful.

Further work will go into two directions. First, the applicability of the approach
is to be evaluated and extended for its use in container terminals. Second, an
implementation of the proposed algorithm as an out-of-the-box support for
terminal management needs further development.

1 Appendix

The generation of solvable test problems is a challenge. In the following, we
present a way of producing solvable test problems, i.e., problems for which a
feasible solution exists. We commence by firstly generating a storage system and
then proceed with the stepwise generation of a task sequence.

Appendix

284 D. C. Mattfeld and H. Orth



1.1 Storage system generation

The storage system consists of m locations, where the ratio between the number of
internal and external locations is externally given. The storage capacities of the
locations are determined with respect to Kmin :

Ki

follows a discrete uniform distribution in ½Kmin; 2 �K � Kmin
; if Hi ¼ I

¼ 0 ; if Hi ¼ E ;

(

where �K denotes the expectation value of Ki to be determined. The total capacity
of the storage system is given by K̂ and is determined by summing the capacities of
all locations:

K̂ ¼
X
i2F

Ki:

The coordinates of the storage locations are distributed to a standard normal,
while the coordinates of transfer points are generated from a uniform distribution in
½�3; 3
: Since a variable drawn from the standard normal distribution falls into this
interval with probability 0.997, storage locations tend to be located in the median of
the transfer points considered.

The storage locations are accessible at reasonable costs from many transfer
points leading to a competition for central locations. This characteristic is often
found for transshipment terminals, where interfaces to the seaside and the
hinterland are located at the terminals’ periphery. Figure 3 provides a bird’s eye
view to the locations and distances of a simulated terminal used later on for the
computational study.

After the assignment of coordinates of all i 2 F, a projection of the interval
½�3; 3
 onto a distance measured is performed. The distances observed are taken as
production coefficient of the manpower demand Di1i2, i.e., the driving time needed
to transport one vehicle of Lj of task j from location i1 to location i2:

Fig. 3 Distribution of storage locations (black) and transfer points (gray)

Storage system generation
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1.2 Generating storage tasks

Tasks are produced by simulating a transshipment scenario for a number of periods.
In this simulation, storage tasks are assigned to periods with increasing time. The
inter-arrival time of storage tasks is consecutively drawn from an exponential
distribution with mean �Λ: The corresponding task volumes Lj are generated from
a discrete uniform distribution in ½Lmin; 2 �L� Lmin
 with mean �L:

Assuming that the total capacity of the storage system K̂ is fully utilized over
the entire time horizon, the mean inter-arrival time of storage tasks is

�Λ ¼
�L

K̂
�Δ ; (16)

with Δ being the externally given and intended mean duration of storage. In the
simulation run, a storage task jðSÞ is assigned to period sjðSÞ ¼ t determined by
rounding its arrival time up to the next largest period number. After jðSÞ is assigned
to a period, a storage location i of sufficient capacity is chosen at random, where
jðSÞ is placed with volume LjðSÞ :

1.3 Generating retrieval tasks

Retrieval tasks are generated in dependency of the arrival process of storage tasks.
Whenever the vehicles of a storage task jðSÞ cannot be stored anymore because of
capacity constraints, a storage location i is selected at random where jðSÞ could be
placed if the location were empty, i.e., LjðSÞ � Ki:

To place storage task jðSÞ, capacity is freed from storage location i by generating
retrieval task jðRÞ, removing its volume from i. The volume LjðRÞ of retrieval task jðRÞ
equals the volume of its already processed storage counterpart, i.e.,

Lj ¼ LVj 8j 2 AjYj ¼ R :

Retrieval tasks are contingently generated for location i and assigned to period
t until the initiating storage task jðSÞ can be placed in i. Finally, volume LjðSÞ is
stored in i.

Figure 4 depicts the scheme of generating tasks. Λ prescribes the growth rate of
the accumulated inventory, i.e., the angle of the arrival process. The capacity of the
storage system K̂ as well as the intended duration of stayΔ tie the retrieval process
to the storage process. In the long run, the capacity limitation of the storage system
entails the generation of retrieval tasks at the same rate as observed for storage
tasks.

Generating storage tasks

Generating retrieval tasks
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1.4 Altering the inventory level

Since retrieval tasks are generated reactively, the storage system is almost fully
utilized. Therefore, its overall inventory level is close to 1.0 denoting a storage
system with K̂ units stored, whereas 0.0 denotes an empty storage yard. To produce
test differing problem instances, we lower the overall inventory level with
hindsight. Once a retrieval task j has been assigned to period sj , we can safely pre-
draw j for a number of periods without risking violation of inventory constraints,
i.e.,

sj :¼ sVj þ bðsj � sVjÞ � Γc 8j 2 AjYj ¼ R

with 0 � Γ � 1 being the intended inventory level.

1.5 Deriving a dynamic problem

In the initial phase of the simulation, merely storage locations are filled. This phase
ends with the execution of the first retrieval task jðRÞ in period sjðRÞ : To discard this
initial phase from the problem instance, time t ¼ 1 of the problem is determined by
sjðRÞ. The inventory level at the beginning of period 1 is stored as the initial inventory
level Bi for each internal location i 2 F of the problem instance.

All retrieval tasks j with sVj < 1 are assigned the storage location chosen for Vj

as their prescribed origin Qj: In this way, these retrieval tasks completely withdraw
the initial inventory level Bi over the course of the simulation.

In order to depict T periods later on in the problem, the simulation has to be
performed for at least sjðRÞ þ T periods. All tasks j with sj > T are discarded from
consideration; merely for the corresponding storage tasks Vj with sVj < T is the
destination Zj of retrieval task j kept to allow the determination of suitable storage
locations for Vj.

In this way, the set A of the problem instance only consists of tasks whose
period of performance sj in the simulation falls into the planning horizon,
A ¼ f j j 1 � sj � T g:
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Fig. 4 Scheme of task generation

Altering the inventory level

Deriving a dynamic problem
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1.6 Generating transfer points

External locations are chosen at random for all the tasks j 2 A generated. Transfer
points are determined as origin Qj for storage tasks and as destinations Zj for
retrieval tasks.

1.7 Generating time-windows

To ensure that the simulation storage assignments performed in the simulation are
incorporated in the problem to be constructed, simulated times sj have to fall into
the interval ½EETj; LETj
: This is achieved by extending the time-window starting
from sj. By extending a time-window beyond t ¼ T ; tasks may not be considered
in the planning horizon anymore. Therefore, if required,

EETj :¼ sj 8j 2 A;

LETj :¼ minfsj þ wj ; Tg 8j 2 A

with wj discrete uniformly distributed in ½0; ð2 �Δ �ΩÞ
. Thus, the extension of
time-windows of tasks is specified in proportion 0 � Ω � 1 of the intended
duration of stayΔ. The existence of time-windows allows the execution of storage
tasks later than performed in the simulation run. This gives the opportunity to
further decrease the overall inventory level as a matter of optimization.

Whenever the time-windows of retrieval j and its corresponding storage Vj

overlap, i.e., LETVj � EETj holds, the affected number Lj of vehicles are
transshipped directly. The pair of j and Vj is replaced by a single transshipment
jðTÞ: Next to the volume LjðTÞ:¼ Lj; the following parameters apply for jðTÞ :

EETjðTÞ :¼ EETj ; QjðTÞ :¼ QVj ;

LETjðTÞ :¼ LETVj ; ZjðTÞ :¼ Zj :

By generating transshipments, the set A of tasks is modified. Despite the
modification of A, the simulation still warrants a feasible solution because the
transshipment merely depicts a simultaneous processing of storage and
corresponding retrieval. With regard to Eq. 3, pt for all T periods of the
simulation are calculated. Capacity pmax is subsequently determined as the largest
pt observed in the simulation:

pmax :¼ max
t¼1;���;T

pt :

In this way, the feasibility with respect to Eq. 11 is kept for every period of the
planning horizon.

Finally, the information generated by the simulation about the period
assignment and storage location of tasks is discarded from the problem instance
before it is used for benchmark purposes.

Generating transfer points

Generating time-windows
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The workload balancing problem at air
cargo terminals

Abstract We consider a large air cargo handling facility composed of two
identical cargo terminals. In order to improve the operational efficiency, the
workload must be balanced between the terminals. Thus, we must assign each
airline served by the facility to one of the terminals such that (ideally): (1) each
terminal has the same total workload, and (2) the workload at each terminal is
distributed evenly along the timeline. Complicating the problem is that cargo loads
are difficult to predict (stochastic). We develop a stochastic mixed integer linear
program model in which a weighted sum of the balance measures is minimized. We
employ sample average approximation for the stochastic program and develop an
accelerated Benders decomposition algorithm to reduce the computational time.
The proposed model can also be applied to partially reassign the airlines for the
operational schedule changes. The computational results show that a small number
of reassignments are often sufficient to rebalance the workload. The simulation
results based on data from a large international airport show that the proposed
algorithms efficiently balance the workload and the cargo service time is
consistently reduced.
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1 Introduction

The efficiency of airport operations has received considerable research interest but
most of the works focus on passenger terminals (see, for example, Baron 1969; De
Neufville and Rusconi-Clerici 1978; Wirasinghe and Bandara 1990; Haghani and
Chen 1998). However, as the revenue from cargo transportation has substantially
increased in the last decade, competitions have become fierce and airlines and
airports strive to streamline their cargo handling operations. Air cargo terminals at
an airport are considered a type of warehouses. Although there is a large literature
on traditional warehouse operations (see, for example, Ashayeri and Gelders 1985;
Cormier and Gunn 1992; Rouwenhorst et al. 2000), very few have discussed the
operations at air cargo terminals.

We observed the operations of an air cargo terminal operator at a leading
international airport that handles high cargo volume from many airlines. This
operator has four equal-sized terminals, two of which are dedicated to import
operations and two to export operations. To maintain accountability and
tractability, import (export) cargo belonging to one airline is always handled by
just one of the two terminals even though the terminals are located adjacent to each
other.

Due to the time-sensitive nature of air cargo handling, it is imperative that cargo
must be processed swiftly. Consequently, there is often a surge of manpower and
equipment demand when a large number of flights are scheduled to depart or arrive
within a short time interval. The cargo volume to handle is difficult to forecast,
varying from day to day and week to week, which makes it difficult to schedule a
regular workforce to meet this highly stochastic workload with the minimum cost.
In practice, no matter how experienced the planners are or how efficient the
scheduling method is, a baffling problem is frequently encountered: Manpower
shortages are often worsened by the fact that completely idle time arises from time
to time during working hours. This dilemma is termed the self-contradiction of
hands shortage and idleness. The chief cause of this problem is the unbalanced
workload distribution because the quality and cost of manpower schedule hinges
very much on the workload. At air cargo terminals, the workload distribution
depends on flight schedules, which vary in intensity throughout the day; however,
the manpower schedule is comprised of a regular 8-h shift for each employee.
Under these circumstances, when the workload surges, employees may be
overloaded and when it slows, they may become underutilized or even idle. In
summary, the relatively regular manpower schedule does not match the irregular
workload distribution. On the other hand, balancing the workload between the two
import (export) terminals by assigning the proper set of airlines to each should help
to improve this situation.

In this paper, for a given number of airlines, each of which may provide a
number of flights, we assign each airline to one of the two import (export)
terminals, T1 and T2, for the objective of balancing the workload between the
terminals along the time line. The operator’s workload can be measured by the total
number of pallets/containers that must be handled. While the workload from each
flight is highly stochastic, an empirical distribution for the workload can be
obtained from the historical data. The flight schedules are given by the airlines and
are assumed to be fixed.
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A clear definition for the measure of balance (imbalance) is necessary for the study
of workload balancing. Naturally, variance or deviation is a good measure; however, it
is hard to employ due to its nonlinear nature. Instead, several different linear measures
have been used. These measures include the maximal workloads, which is broadly
employed (e.g., Berrada and Stecke 1986) the sum of the overloads and underloads
(Moreno and Ding 1989), the functions of the maximal deviations (Shanker and Tzen
1985), and so forth. Regarding the effectiveness, Guerro et al. (1999) stated that the
simplest and the most effective measure is the “difference between max and min.” A
comprehensive comparison of balance measures was presented byKumar and Shanker
(2001) and they concluded that the “min [average pairwise difference]” is the best
objective for workload balancing. Although all these studies were conducted in the
areas of manufacturing and production, they provide a good reference to define a
measure of workload balance in the context of cargo terminals.

In this paper, two of the above-mentioned balancemeasures are employed. The first
is the “the maximal workloads,” the second is what we call “sum pairwise difference,”
which is derived from “minimization of variance.” After we obtain the solution using
these two linear measures, we also compute the variance as an additional indicator of
workload balancing.

In the rest of the paper, a stochasticmixed integer linear program (S-MILP)model is
developed in Section 2 in view of the stochastic nature of the workload. In the model, a
weekly schedule with time points wrapping around from the end to the beginning is
considered. This is similar to the way that is practiced in the airline scheduling; as in all
these problems, the work demand is driven by the flight schedules, which repeat
weekly. To compute the workload, the time span of 1 week is further divided into equal
time periods. Sample average approximation (SAA) is employed to transform the
stochastic program to a solvable deterministic model, which is then solved by
decomposition-based algorithms developed in Section 3. In Section 4, an extended
model called partial reassignment is presented, followed by the computational results in
Section 5. The performance of the optimal assignment is examined in Section 6 with
both numerical and simulation experiments.

2 Mathematical formulations

The following notations are used:

Sets and indexes:
J: Set of all time periods, indexed by j
l: Set of all airlines, indexed by i
Parameters:
aij: Workload of airline i at period j
Aj: Total workload at period j. Aj ¼

P
i2I

aij

li: Total workload for airline i. li ¼
P
j2J

aij

L: Total workload for all airlines. L ¼P
i2I

P
j2J

aij

w1
j , w

2
j : Total workload at period j assigned to T1 and T2, respectively

Decision variables:
xi: (0, 1); 1 if airline i is assigned to terminal T1, 0 if otherwise (airline i is assigned to

terminal T2)
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2.1 Deterministic model

An instance of the problem can be modeled as a deterministic linear program as
follows:

½OP
 Minimize C � zþ
X
j2J

yj (1)

s:t: z �
X
i2I

aij xi for all j (2a)

z � Aj �
X
i2I

aij xi for all j (2b)

yj � 2 �
X
i2I

aij xi � Aj for all j (3a)

yj � Aj � 2 �
X
i2I

aij xi for all j (3b)

0:5� τð ÞL �
X
j2J

w1
j � 0:5þ τð ÞL

x 2 0; 1f gy; z � 0
(4)

The objective in Eq. 1 is to minimize a weighted sum of two objectives: “maximal
workload” and sum of “pairwise difference,” represented by auxiliary decision
variables z and yj, respectively.

z ¼ max w1
j;w

2
j : for all j

n o
(5)

yj ¼ w1
j � w2

j

��� ��� for all j (6)
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The overall workload is required to spread as evenly as possible between the
terminals at all periods because the two terminals are identical in terms of size and
equipment, and equipment and/or space are very often in shortage (causing delays
in cargo processing). Thus, evenly distributing the workloads between the
terminals improves overall resource utilization. Secondly, we minimize the
maximum workload among time and terminals. The labor cost of the facilities is
determined by the workload at the peak period, thus, it is important to minimize the
peak period workload. In addition, this will ensure that the highly promised service
level can be achieved even during the busiest time. Although these two
requirements are not completely conflicting, they may not always be achieved
simultaneously. Therefore, a weighted sum of these two measures with the weight
parameter C is employed. C is a constant and user-defined parameter (depending
on users’ cost parameter values), which would affect the optimal solution. An
insight to choose an appropriate C value can be obtained from the computational
results provided in Section 5.1.

Constraints 2a, 2b, 3a, and 3b are to build the linear program model for z and yj.
Constraint 4 restricts the total workloads of the two terminals to be of similar size.
Lower and upper bounds of total workload for each terminal must be 0.5+τ of the
total workload:

0:5� τð ÞL �
X
j2J

w1
j � 0:5þ τð ÞL (7)

For example, when τ=0.05, 45 and 55% of the total workload are lower and upper
bounds. It may not be possible to satisfy this constraint for some data sets.
However, for the data sets used in this study, which we obtained from real terminal
operations, infeasibility has not occurred. In case of infeasibility, we can adjust the
parameter.

[OP]is a difficult mixed integer program to solve because the solution for the
underling LP is:

xi ¼ 1=2; for all i (8)

which makes it difficult to obtain a good branch-and-bound starting basis. Because
the two terminals are identical, by preassigning the largest airline to either terminal,
that is,

x1 ¼ 1 (9)

the computational time can be reduced by nearly 50%.

2.2 Model reformulation

In [OP], the maximum workload z is bounded by a pair of constraints, Eqs. 2a and
2b at all periods. Similarly, the absolute value of difference y is constrained by
Eqs. 3a and 3b. Each pair of these constraints can be combined by the following
transformations.
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To transform the constraints in Eqs. 3a and 3b, auxiliary variables pj and qj are
introduced:

yj � pj ¼ 2 �
X
i2I

aij xi � Aj pj � 0 (10a)

yj � qj ¼ Aj � 2 �
X
i2I

aij xi qj � 0 (10b)

Equations 11 and 12 can be obtained from the transformation of Eqs. 10a and
10b, which are equivalent to Eqs. 3a and 3b.

pj þ 4
X
i2I

aij xi � 2Aj (11)

yj ¼ pj þ 2
X
i2I

aij xi � Aj (12)

Because all the constraints for z and y are computed from the terms
P
i2I

aijxi , Aj,

and their differences, a new set of constraints that consist of z and y can be derived
from the two pairs of constraints.

For the constraint in Eq. 2a, when we multiply both sides by 2 and subtract Aj

from both sides, we obtain:

2z� Aj � 2
X
i2I

aij xi � Aj (13a)

Similarly, for the constraint in Eq. 2b, multiply by 2 and then subtract Aj:

2z� Aj � Aj � 2
X
i2I

aijxi (13b)

The left hand side of Eqs. 13a and 13b are exactly the same with
Eqs. 3a and 3b. Thus, we can tighten the bounds for z by introducing a new
set of constraints as follows:

2z� Aj � yj for all j (13)

In addition, z must be minimized in the objective function. Therefore, Eq. 13 is
equivalent with Eqs. 2a and 2b. Substituting y with Eq. 12, the number of
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constraints is reduced by half. The reformulation is denoted by [OP']where a
constant term is removed from the objective function.

Minimize 2
P
i2I

li xi þ C � zþP
j2J

pj

 !
s: t: z � pj

�
2þP

i2I
aij xi for all j

pj þ 4
P
i2I

aij xi � 2Aj for all j

0:45L �P
i2I

li xi � 0:55L

z; p 2 Rþ x 2 0; 1f gx1 ¼ 1

(OP')

2.3 Stochastic model and sample average approximation

In [OP], the average workload is used for aij. It is doubtful whether the optimal
solution provides the robust performance when the actual workload varies over
time. To model this stochastic behavior, aij is considered a random variable
following a probability distribution obtained from the historical data. Define P to
be a collection of possible instances of the workload vector (aij). The assignment
problem can be formulated as follows:

Minx2Θ f xð Þ:¼ Eωk2Ph x;ωk
� � �

(14)

where Θ :¼ xjx 2 0; 1f g; x1 ¼ 1f g, ωk stands for an instance of the workload
vector, and k is an integer number representing the kth particular instance.

h x;ωk
� � ¼ minyk ;zk Czk þP

j2J
ykj

s:t: zk � P
i2I

akijxi for all j

zk � Ak
j �

P
i2I

akijxi for all j

ykj � 2 �P
i2I

akijxi � Ak
j for all j

ykj � Ak
j � 2 �P

i2I
akijxi for all j

0:45Lk �P
i2I

lki xi � 0:55Lk

yk; zk � 0

(15)

It is very difficult if not impossible to solve this optimization problem. First, for
a given decision variable x, computing the objective function value requires
computing the expected value of a linear programming value function h(x, ω). The
exact expectation involves the probability distributions of multiple dimensions and
there is no closed form to express this. Secondly, even if the expectation can be
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computed numerically for a given assignment, it is computationally intractable to
find the best assignment among all the possible assignments.

To overcome this problem, sampling-based algorithms may be employed
(Shapiro and Homem-de-Mello 1998; Verweij et al. 2003; Kleywegt et al. 2001).
The basic idea is simple: A random sample is obtained and the expectation is
approximated by the corresponding sample average value. The idea of using SAAs
for solving stochastic programs is a natural one and has been employed by various
researchers over the years.

Assume that {ω1, ω2,…ωN} is a random sample where N is defined by the
sample size. The objective becomes:

Minx2Θ f
_

N xð Þ :¼ N�1
XN
k¼1

h x;ωk
� �( )

(16)

Combining Eqs. 15 and 16, the assignment problem can be modeled
deterministically for a given sample. To distinguish this from [OP], we call it
the stochastic problem SP].

Minimize 1
N C

PN
k¼1

zk þ PN
k¼1

P
j2J

ykj

 !
s:t: zk �P

i2I
akij xi for all j; k

zk � Ak
j �

P
i2I

akij xi for all j; k

ykj � 2 �P
i2I

akij xi � Ak
j for all j; k

ykj � Ak
j � 2 �P

i2I
akij xi for all j; k

0:45Lk �P
i2I

lki xi � 0:55Lk for all j; k

x 2 0; 1f g x1 ¼ 1 yk; zk � 0

(SP')

It was shown (Shapiro, 2001) that the solutions of Eq. 16 converge to the
optimal solution of Eq. 14 with the probability of one as N goes to infinity. In
addition, Shapiro and Homem-de-Mello (2001) and Kleywegt et al. (2001) proved
that the convergence rate is exponentially fast if the involved probabilistic

Table 1 Optimality gap (the gap between lower and upper bounds) with different sample sizes

Sample size Lower bound Upper bound Relative gap (%)

10 6,782.8 6,871.69 1.3105
20 6,800.66 6,874.76 1.0896
30 6,845.39 6,879.99 0.5054
40 6,835.71 6,858.91 0.3394
50 6,833.12 6,856.54 0.3427
60 6,852.14 6,857.32 0.0756
70 6,849.11 6,854.03 0.0718
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distributions are discrete. It was also suggested that a fairly good approximate
solution to the problem in Eq. 14 can be obtained by solving the SAA problem in
Eq. 16 with a modest sample size. In practice, the SAA method computes the
solutions of Eq. 16 with independently distributed samples for any given sample
size. Santoso et al. (2003) developed a method to quantitatively estimate the gap
between the optimal solution and the SAA approximation. In their approach, input
data with the same sample size N is randomly generated. Each of the problems is
considered an independent deterministic problem and is solved. The statistical
lower and upper bounds are obtained accordingly. By increasing the sample size N,
the gap between the lower and the upper bounds is reduced. Using this approach,
we solve the problem [SP]for the data set ImD. The computational results are
reported in Table 1, which shows that the gap between these bounds decreases fast
as the sample size increases. When the sample size is greater than 30, the gap
becomes less than 1%, and when the size is greater than 60, the gap is less than
0.1%. Based on these observations, we propose to use N=100 to solve [SP].

Using the same method of reformulating [OP] to [OP'], the [SP] can be
reformulated as follows:

Minimize 1
N

PN
k¼1

2
P
i2I

lki xi þ C � zk þP
j2J

pkj

 ! !
s:t: zk � pkj

.
2þP

i2I
akij xi for all j; k

pkj þ 4
P
i2I

akij xi � 2Ak
j for all j; k

0:45Lk �P
i2I

lki xi � 0:55Lk for all k

z; p � 0 x 2 0; 1f g x1 ¼ 1

(SP)

The reformulation reduces the problem complexity and thus is able to reduce
the computational time as well. To illustrate the reduction in the computational
time, a computational experiment is conducted and the results are reported in
Table 2.

The results show that the new formulation significantly reduces the
computational time, especially when the sample size is not larger than 50.
The time reduction ranges from 40.6 to 53.4% of the computational time
under the original formulation. When the sample size becomes large, e.g.,
100, as proposed in Table 1, the computation takes longer time and the
reformulation only reduces 8.7% of the computational time. In the following
section, the Benders decomposition algorithm is developed to solve [SP]

Table 2 The computation time in seconds under formulation [SP]and [SP']

Sample size Formulation [SP] Formulation [SP ′] Time reduction as (%)

1 1.39 0.78 43.9
5 23.05 10.75 53.4
20 349.11 175.89 49.6
50 1,851.16 1,099.36 40.6
100 7,771.02 7,095.41 8.7
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with large sample size. Furthermore, an acceleration technique is developed
to further shorten the computational time.

3 Benders decomposition

The problem [SP]can be considered a two-stage program. The first stage is to
determine the airline assignment represented by the binary decision variable x and
the second stage is to obtain the optimal balance measures y and z based on the
predetermined airline assignment and parameter values. The second stage problem
is trivial because the optimal solution can be easily obtained by

zkopt ¼ max
X
i2I

akij xi;A
k
j �

X
i2I

akijxi for all j

 !
(17)

ykjopt ¼ 2 �
X
i2I

akij xi � Ak
ij

�����
����� for all j (18)

As the number of airlines or the sample size increases, it is very difficult to
solve [SP]. To solve this type of two-stage large-scale problems, a commonly used
technique is to employ the Benders decomposition algorithms (e.g., Benders 1962;
Higle and Sen 1991; Birge and Louveaux 1997). We therefore develop the Benders
decomposition algorithm for [SP]. The solution procedures are provided as
follows.

Step 0 Set lower and upper bounds, lb=−∞ and ub=+∞, respectively. Set the
iteration index i=0. Let ex denote the current solution.

Step 1 Solve the relaxed master problem.

Minimize ξ
s: t: 0:45Lk �P

i2I
lki xi � 0:55Lk for all k

Benders Cuts½ 

ξ 2 R x 2 0; 1f g x1 ¼ 1

(MP)

Let the optimal solution be
_

ξ and
_

x . Update lower bound lb ¼ _

ξ .
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Step 2 For k=1, 2,…, N, subproblems for the corresponding x_ are as follows:

Minimize θk ¼ Czk þP
j2J

ykj

s: t: zk �P
i2I

akijx
_

i for all j : π1kj

zk � Ak
j �

P
i2I

akijx
_

i for all j : μ1k
j

ykj � 2 �P
i2I

akijx
_

i � Ak
j for all j : π2kj

ykj � Ak
j � 2 � P

i2I
akijx

_

i for all j : μ2k
j

z; y � 0

(Subk)

where π1k
j ;μ1k

j ; π2kj , and μ2k
j are the corresponding dual variables for

[Sub k]. In the subproblems [Sub k], k=1, 2,…, N are always feasible and the
optimal solutions are given by Eqs. 17 and 18. Suppose that the
corresponding optimal dual variable values are bπ1k

j ; bμ1k
j ; bπ2k

j ; and bμ2k
j

and the objective function value is bθk. Let
bθ ¼ 1

N

XN
k¼1

bθk :
If ub > bθ , update the upper bound ub ¼ bθ and update the current solutionex ¼ bx .

Step 3 If ub−lb≤ɛ where ɛ≥0 is a prespecified optimality tolerance, stop. ex is the
optimal solution and ub is the optimal objective function value; otherwise,
proceed to step 4.

Step 4 A Benders optimality cut is generated as follows:

N � ξ � PN
k¼1

ðPJ
j¼1

ðπ1k
j �P

i2I
akij xiÞ þPJ

j¼1

ðμ1k
j � ðAk

j �
P
i2I

akij xiÞÞ

þPJ
j¼1

ðπ2kj � ð2 �P
i2I

akij xi � Ak
j ÞÞ þ

PJ
j¼1

ðμ2k
j � ðAk

j � 2 �P akij xiÞÞÞ

We add this to [MP]. Update the iteration index i to i+1 and go to step 1.

3.1 Accelerating convergence: a new feasibility cut

The Benders decomposition algorithm converges to the optimal solution. However,
convergence might require a large number of iterations for real problems. For [SP],
we observe that the convergence rate is extremely slow (see Table 5). Thus, we
accelerate convergence by adding some auxiliary linking variables of the two
stages to the first stage problem; from these, a new set of Benders feasibility cuts
are generated in each iteration in place of the earlier optimality cuts. The new

(Subk)
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formulation is given in [SP2]. New decision variables z and yj are defined and [SP]
is reformulated as follows:

½SP2
 Minimize C � zþ
X
j2J

yj (SP2)

s: t: z ¼ 1

N

XN
k¼1

zk (SP2.1)

yj ¼
1

N

XN
k¼1

ykj for all j (SP2.2)

zk �
X
i2I

akij xi for all j; k (SP2.3)

zk � Ak
j �

X
i2I

akijxi for all j; k (SP2.4a)

ykj � 2 �
X
i2l

akijxi � Ak
j for all j; k (SP2.4b)

ykj � Ak
j � 2 �

X
i2l

akij xi for all j; k (SP2.5a)

0:45Lk �
X
i2l

lki xi � 0:55Lk for all k (SP2.5b)
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y; y; z; z � 0 x 2 0; 1f g x 1 ¼ 1 (SP2.6)

From Eq. SP2.4a,

XN
k¼1

zk �
XN
k¼1

X
i2I

akijxi for all j (SP2.4a')

Dividing both sides by N and switching the sequence of the summation on the right
hand side, we obtain:

1

N

XN
k¼1

zk �
X
i2I

1

N

XN
k¼1

akij

 !
� xi for all j

Let aij ¼ 1
N

PN
k¼1

akij and Aj ¼
P
i2I

aij ; we have the following inequalities for z :

z �
X
i2I

aij xi for all j (SP2.4a*)

Similarly, for Eqs. SP2.4b, SP2.5a, and SP2.5b:

z � Aj �
X
i2I

aijxi for all j (SP2.4b*)

yj � 2 �
X
i2I

aijxi � Aj for all j (SP2.5a*)

yj � Aj � 2 �
X
i2I

aijxi for all j (SP2.5b*)

Adding Eqs. SP2.4a*, SP2.4b*, SP2.5a*, and SP2.5b* into [SP2], we obtain an
equivalent new formulation [SP3].

Minimize C � zþ
X
j2J

yj (SP3)

s:t:z �
X
i2I

aij xi for all j (SP3.1)
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z � Aj �
X
i2I

aij xi for all j (SP3.2a)

yj � 2 �
X
i2I

aij xi � Aj for all j (SP3.2b)

yj � Aj � 2 �
X
i2I

aij xi for all j (SP3.3a)

z ¼ 1

N

XN
k¼1

zk (SP3.3b)

yj ¼
1

N

XN
k¼1

ykj for all j (SP3.4)

zk �
X
i2I

akijxi for all j; k (SP3.5)

zk � Ak
j �

X
i2I

akij xi for all j; k (SP3.6a)

ykj � 2 �
X
i2I

akij xi � Ak
ij for all j; k (SP3.6b)

ykj � Ak
ij � 2 �

X
i2I

akij xi for all j; k (SP3.7a)
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0:45Lk �
X
i2I

lki xi � 0:55Lk for all k (SP3.7b)

y; y; z; z � 0 x 2 0; 1f g x1 ¼ 1 (SP3.8)

For this new formulation, the decision variables x, z , and y are optimized in the
first-stage master relaxed problem [MP*].

Minimize C � zþP
j2J

yj

s:t: z �P
i2l

aij xi for all j

z � Aj �
P
i2l

aij xi for all j

yj � 2 �P
i2l

aij xi � Aj for all j

yj � Aj � 2 �P
i2l

aij xi for all j

0:45Lk �P
i2l

lki xi � 0:55Lk for all k

y; z � 0 x 2 0; 1f g x1 ¼ 1
Benders Feasibility Cuts½ 


(MP*)

We describe next why feasibility cuts instead of optimality cuts are necessary for
this new formulation. Let the optimal solution of [MP*]be x_; z_; and y_: Then, the
second-stage subproblem becomes:

Minimize 0 (Sub*)

s:t:
XN
k¼1

zk ¼ N � z_ αð Þ (Sub*.1)

Table 3 Data sets for the computational experiments

Instance Number of flights Number of airlines Duration of each period (h) Number of periods

ExD 252 17 1 168
ImD 752 50 2 84
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XN
k¼1

ykj ¼ N � y_j for all j βj

� �
(Sub*.2)

zk �
X
i2I

akijx
_

i for; all j; k γkj

	 

(Sub*.3)

zk � Ak
j �

X
i2I

akijx
_

i for all j; k λk
j

	 

(Sub*.4a)

ykj � 2 �
X
i2I

akijx
_

i � Ak
j for all j; k πk

j

	 

(Sub*.4b)

ykj � Ak
j � 2 �

X
i2I

akijx
_

i for all j; k μk
j

	 

(Sub*.5a)

Table 4 Workload variances and values of C

C 0, 10, 20 40, 50 70, 84, 100, 200, 1,000 10e4 10e6

Maximum workload 76.4 75.6 75.5 75.0 75.0
Sum of difference 255.3 275.5 282.1 316.3 448.7
Workload variance 61.08 60.97 60.75 62.00 63.69

Table 5 Number of iterations for the Benders decomposition-based algorithms

Sample
size

General Benders
decomposition

Accelerated Benders
decomposition

Reduction
(%)

1 261 1 99.62
5 289 77 73.36
20 269 95 64.68
50 267 86 67.79
100 251 80 68.13
200 252 84 66.67
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y; z � 0 (Sub*.5b)

where the Greek alphabets in the brackets are the dual variables for the
corresponding constraints.

In [MP*], z
_

represents the maximum value of the average workload over the
periods, but the corresponding z represents the absolute maximum value of the
workload over all the scenarios and the equations (Eq. Sub*.2) cannot be satisfied
unless the solution is optimal. Thus, a Benders feasibility cut is generated by the
following procedure.Consider the dual of [Sub*]:

Maximize αN � z_ þP
j2J

βjN � y_j þ
PN
k¼1

P
j2J

γkj
P
i2I

akij x
_iþPN

k¼1

P
j2J

λk
j Ak

j �
P
i2I

akijx
_i

� �
þPN

k¼1

P
j2J

πk
j 2

P
i2I

akijx
_i� Ak

j

� �
þ PN

k¼1

P
j2J

μk
j Ak

j � 2
P
i2I

akijx
_i

� �
s:t: zk
� �

αþP
j2J

γkj þ
P
j2J

λk
j � 0 for all k

ykj

	 

βj þ πk

j þ μk
j � 0 for all j; k

α; β unrestrictedγ;λ;π;μ � 0

(DP)

Table 6 Computational time in seconds for different algorithms and models

Sample
size

MIP
optimizer

General Benders
decomposition

Reduction
(%)

Accelerated Benders
decompositions

Reduction (%)a

1 1 67 −6,600 0.95 5.00 (98.58)
5 23 111 −382.61 185 −704.35 (−66.67)
20 349 185 46.99 320 8.31 (−72.97)
50 1,851 370 80.01 378 79.58 (−2.16)
100 7,771 620 92.02 527 93.22 (15.00)
200 36,254 1,216 96.65 1,114 96.93 (8.39)

a The number in parentheses is the relative reduction between the general and accelerated Benders
decomposition

Table 7 Case 1 partial reassignment: terminate the services of the second biggest airline

P Airlines reassigned CPU time in seconds Gap in objective value (%)

# Percentage (%)

0 0 0.00 0.9 19.19
5 2 4.08 4.6 4.19
7 3 6.12 5.7 2.66
10 4 8.16 11 1.98
30 14 28.57 102 0.14
50 23 46.94 187 0.00
100 23 46.94 199 0.00
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If [Sub*]is infeasible, then the objective function of [DP]is unbounded. Hence,
we add a feasibility cut:

0 � αN � z_ þ
X
j2J

βjN � y_j þ
XN
k¼1

X
j2J

γkj
X
i2I

akijx
_iþ

XN
k¼1

X
j2J

λk
j Ak

j �
X
i2I

akijx
_i

 !

þ
XN
k¼1

X
j2J

πk
j 2

X
i2I

akijx
_i� Ak

j

 !
þ
XN
k¼1

X
j2J

μk
j Ak

j � 2
X
i2I

akijx
_i

 !

It is notable that although the master problem [MP*]is more difficult to solve than
the original [MP] due to the increased number of variables and constraints,
convergence is accelerated considerably and the total computational time is
significantly reduced (see Table 6).

4 Partial reassignment

Once airlines are assigned to the terminals, relocating the services to another
terminal may require costly readjustments. While airports often experience
operational (or seasonal) schedule changes by airlines, these changes may not
justify the relocation of the large number of airline services. With the slightest
change in services, the workload imbalance may be propagated. To avoid such
imbalance, the seemingly best approach is to reshuffle the airlines and to
reoptimize the workload-balancing problem, but this is not practical because the
airline assignment should not be changed too often. Thus, we introduce a new
constraint that restricts the number of airlines to be relocated in the model [SP].

Table 8 Case 2 partial reassignment: terminate the services of the second smallest airline

P Airlines reassigned CPU time in seconds Gap in objective value (%)

# Percentage (%)

0 0 0.00 0.67 1.71
5 2 4.08 6.9 1.30
7 3 6.12 11 1.11
10 4 8.16 18 0.90
30 13 26.53 138 0.20
50 24 48.98 248 0
100 24 48.98 262 0

Table 9 Imbalance measures under the current and the optimal assignments

Current assignment Optimal solutions Reduction (%)

T1 T2 T1 T2

Maximum workload 31.8 47.6 35.85 35.85 24.68
Variance 32.65 39.17 26.73 26.22 26.27
Sum of difference 1,736.8 258.8 85.10
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Assume that the current assignment is x0 obtained from solving [SP]. After
changes in airline services, such as the addition or deletion of flights, the balancing
problem is solved again without reshuffling all the airlines. Let the new solution beex, then the new assignment should satisfyX

i2I 0
exi � x0i
�� �� � P

100
� x0
�� ��; (19)

where the set I′ is the set of airlines that remains from the previous assignment, the
parameter P is defined by the percentage of the total number of airlines whose
original assignment can be changed, and P∈[0,100]. For the two extreme points,
P=0 means no permission to change any airline assignment and P=100 allows the
overall reoptimization. The absolute term exi � x0i

�� �� causes the model to be nonlinear.
However, we note that x0 andex are both binary variables and x0 is given. If x0i ¼ 1 , thenexi � x0i
�� �� ¼ exi � 1j j ¼ 1� exi ; otherwise, if x0i ¼ 0 , then exi � x0i

�� �� ¼ exi � 0j j ¼ exi .
Therefore, the model is still a mixed integer linear program after adding the constraint.

5 Computational results

In this section, computational experiments are conducted to examine the
performance of the proposed solution procedure with the data from an international
airport cargo terminal. To obtain aij, the following three steps of preprocessing are
taken: (1) The total cargo load estimation for each flight, (2) arrival (request) time
distribution of export (import) cargo, and (3) Summation of the cargo load for all
the flights that belong to an airline. Table 3 lists the two data sets used for these
computational experiments. ImD is a comprehensive set of data, which contains 50
airlines from two Import Terminals. ExD is an independent data set from one Export
Terminals, which contains 17 airlines. In the computational experiments, to compare
the performance of different algorithms and formulations, the small data set ExD is

Table 10 Simulation results for the scenario of inadequate capability

Assignment terminal Current assignment Optimal assignment

T1 T2 T1 T2

Average cycle time (min) 6.66 31.22 14.43 8.08
Overall average (min) 21.55 11.40
Reduction (%) 47.10

Table 11 Simulation results for the scenario of adequate capability

Assignment terminal Current assignment Optimal assignment

T1 T2 T1 T2

Average cycle time (min) 6.85 6.83 6.73 6.77
Overall average (min) 6.84 6.75
Reduction (%) 1.34
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employed for the sake of computational (experimental) time. Wherever the
computation is to validate the results for different assignments, the complete data
set ImD is employed. The computer codes were written in Microsoft Visual C++
with ILOG CPLEX8.1 and Concert Technology 1.3 and executed in a DELL
Pentium IV computer with 2.4 GHz CPU and 512 MB RAM in the Microsoft
Windows XP environment.

5.1 Effect of C

An experiment is conducted using the data set ImD to investigate the impact of C
on the optimal solution. [SP]is solved with different C values ranging from 0 to
10e6, and the two objective function values are obtained accordingly. With the
optimal solution obtained, the variance of workload among the periods is computed
as shown in Table 4.

The results show that the optimal solution may change with the change of C but
not all the time. C=0 and C=10e6 are the two extreme cases that consider only one
objective. The best solution is obtained when both objectives are considered. Thus,
we propose the C value that equals to the total number of periods (e.g., 168 for
ExD) where both objectives are considered with equal importance.

5.2 Results of benders decomposition algorithms

A computational study is carried out using the data set ExD for different sample
sizes. Table 5 shows the number of iterations for both the general and the
accelerated Benders decomposition algorithms. The reduction in the number of
iterations is provided by the percentage in the fourth column. Table 6 reports the
computational time of the two algorithms with respect to the default MIP solver (in
CPLEX). The relative time reductions by these algorithms are also computed with
respect to the computational time of the default solver.

The results show that the general Benders decomposition algorithm reduces the
computation time considerably when the sample size is greater than 50. The
reduction is more than 90% when the sample size is 100, which is considered large
enough (see Section 2.3). It reaches 96% when the sample size becomes 200. In
addition, the accelerated Benders decomposition reduces the number of iterations
by more than 60% compared with the general Benders decomposition. As
discussed in Section 3, the complexity of a decomposed subproblem increases in
the accelerated algorithm, but the convergence is significantly improved. Despite
the tradeoff between these two, the solution time is still reduced as the sample size
increases: When the sample size is 100, this time reduction is 15%.

When the sample size is very small (less than 10), the default MIP solver is the
most efficient. As the sample size increases, the Benders decomposition algorithms
become more efficient, and especially with the sample size being large enough, the
accelerated Benders decomposition is the most efficient algorithm.
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5.3 Partial reassignment

Two different scenarios are considered to illustrate the partial reassignment:

Case 1 From the ImD data set, the services of the second biggest airline are
terminated.

Case 2 From the same data set, the services of the second smallest airline are
terminated.

Different P values that represent the different number of airlines to be
reassigned may affect the resulting workloads of the terminals. While the increase
of P values may improve the solution quality, this significantly increases the
computational time as well. Thus, the impact of P on the objective function value is
examined. As shown in Tables 7 and 8, the “gap in the objective value” is measured
by the difference between the optimal objective function values from the partial
assignment and the full assignment models. The number of airlines whose
assignment is actually changed is reported in the second column.

Changes in airline services may cause the imbalance of the terminal workloads.
The imbalance becomes greater with the changes in the services of bigger airlines
(19.19 vs 1.71%). As the P value increases, the imbalances are drastically reduced.
With P=10, the gap between the objective function values of the optimal and the
partial reassignments becomes 1.98% only and in both cases, as P becomes 30 or
40, the partial reassignment provides a near-optimal solution with only half the
computational time.

6 Evaluation of the optimal airline assignments

The optimal airline assignment is obtained by solving [SP]with N=100, which is
large enough (see Section 2.3). The performance of the optimal solution vs the
current assignment is examined under a real workload scenario. The two balance
measures as defined in the model, the maximum workload

max w1
j ;w

2
j : forallj

n o	 

, and the sum of difference

P
j2J

w1
j � w2

j

��� ��� !
are

computed. In addition, the variance of workload among the periods at each
terminal is also computed. Table 9 shows these results. The maximum workload is
reduced by 24.68% and the variance reduction is 26.27%. The reduction in the sum
of difference is 85.10%. These results show that the optimal solution significantly
reduces the workload imbalance.

To illustrate the benefit of the workload balancing at a cargo terminal,
simulation experiments are conducted using a simulator developed by Leong
(2004). This simulator visualizes the simulation of cargo handling process in an
import terminal. The cycle time per cargo retrieval trip is measured as a
performance indicator. This simulator was built on a simplified assumption: The
cargo handling capability is constant over all the time. It is the most ideal resource
schedule for an air cargo terminal because the manpower schedule is comprised of
a continually regular 8-h shift for each employee, which is just one of the
motivations of this research that we introduced in Section 1.

311The workload balancing problem at air cargo terminals



The experiment simulates a 5-week operation with the actual flight schedule.
The result from the first week is not analyzed (warm-up period). For the actual data
set ImD, the simulation run was exploded with unserved cargoes due to the large
deviation of workload that cannot be coped with a constant limited capability. In
such a scenario, the balanced assignment reduces the average cycle time by 47.10%
compared with the current assignment. Table 10 shows the results.

As a comparison, the cargo loads was reduced by 20% with the removal of the
services for the second and third biggest airlines to obtain a steady state
performance statistics. After the reduction, the workloads were accomplished even
during its peak periods and the steady-state statistics are obtained as shown in
Table 11.

The result shows that the proposed optimal airline assignments reduce the
retrieval cycle time by 1.34%. The improvement is marginal due to the assumptions
that each terminal has a constantly adequate capability over time. This result
explains again that workload balancing is marginally meaningful under the
condition of adequate resource capability.

In reality, however, the main resource, manpower, is always sought to be
minimized to maintain low cost. Therefore, the comparison of these two scenarios
commendably justified that workload balancing is able to contribute significant
efficiency improvement under the condition of inadequate resource capability,
which is exactly a reality that many air cargo terminals are facing today.

7 Conclusions

An S-MILP approach for the workload-balancing problem at air cargo terminals
was developed. The services for airlines are assigned to two identical terminals so
that the stochastic workload is balanced between terminals. Two measures of the
workload imbalance are introduced and minimized. SAA is employed to transform
the stochastic program to a solvable deterministic model. The model is further
simplified by a reformulation, which significantly reduces the computational time
especially for the problems with small sample size. The Benders decomposition
algorithm is then developed to solve the problems with large sample size. In
addition, new Benders cuts are developed to accelerate the Benders decomposition
algorithm, which further reduces the computational time. Two actual examples
from an international air cargo terminal are employed in our computational
experiments. The results show that the proposed algorithms provide the optimal
solution efficiently. For practical applications when operational or seasonal
schedule changes for some airlines occur, partial reassignment is proposed to
promptly reoptimize the airline assignments. The computational results show that
the partial reassignment approach is efficient and practical. Finally, a simulation
experiment shows that the proposed optimal airline assignment significantly
reduces the cycle time of the terminal operations by balancing the workloads
between the terminals.
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D. Li . H.-C. Huang . A. D. Morton . E.-P. Chew

Simultaneous fleet assignment and cargo
routing using benders decomposition

Abstract In this paper, we incorporate the cargo routing problem into fleet
assignment to model the fleet assignment more accurately. An integrated model
and a Benders decomposition-based approach are developed to simultaneously
obtain the optimal assignment of fleet to legs and the routing of forecasted cargo
demand over the network. Computational experiments show that this integrated
approach converges very fast for all different test scenarios.

Keywords Airline planning . Fleet assignment . Benders decomposition

1 Introduction

Airline schedule planning consists of all planning activities that have to be carried
out so that the schedule is operationally feasible and profitable. A set of
mathematical models are often employed to support these activities. Normally,
these activities are carried out in sequence and the corresponding models are solved
individually. Such a sequential approach ignores the linkages between these
planning activities and leaves scope for improvement.

Fleet assignment is a planning activity that aims to maximize profitability by
optimally assigning fleets (types of airplanes) to legs (a nonstop flight from an
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origin to a destination with specific departure and arrival times). In most published
literature, this step considers only the leg-based passenger flow. As all legs in a
network are interdependent (Barnhart et al. 2002), failing to capture the network
effect may result in not addressing the actual problem accurately. The incorporation
of the itinerary-based passenger flow into fleet assignment has been studied by
Barnhart et al. (2002), but they do not take into account the cargo flow. As the
aircargo traffic has grown robustly relative to passenger traffic over the decade
1993–2003, and as industry forecasters expect this trend to continue (Boeing
2004), the cargo business is increasingly important for any airline which provides
cargo capacity. The route of cargo is determined to a large extent by the cargo
capacity of every leg, which depends on the fleet assignment decision. As a result,
the fleet assignment has great influence on the cargo flow and, thus, on revenue. A
traditional approach to the fleet assignment may cause great loss in the cargo
revenue and, thus, the total profit of an airline. Incorporating the cargo routing into
the fleet assignment can help the combination carrier to better balance its resources
and the forecasted cargo demand.

Few references can be found in the operations research literature regarding the
integration of planning activities in the airline industry. One of the early efforts in
this direction is the work of Barnhart et al. (1998a), who proposed a string-based
integrated model to simultaneously solve the fleet assignment and aircraft routing
problems. A string was defined as a sequence of connected legs beginning and
ending at a maintenance station, without violating the flow balance and the
maintenance feasibility requirements. Another work by Barnhart et al. (1998b)
describes the integrated approximate modeling of the fleet assignment and crew-
pairing problems. Because the crew-pairing problem takes a very long time to be
solved, an approximate duty-based model (Barnhart and Shenoi 1998) was used in
place of it to maintain solvability. The integrated model was solved by an advanced
sequential approach; thus, it was not really a simultaneous optimization.
Desaulniers et al. (1997) presented an integration of the fleet assignment model
and time windows. Two equivalent models were constructed. Column generation
and a Dantzig–Wolfe decomposition approach were employed to solve the
problem. Another example was given by Rexing et al. (2000), where the
assignment of aircraft was considered together with the flight departure times to
improve flight connection opportunities.

Recently, Cordeau et al. (2001) and Mercier et al. (2003) introduced an
integrated model and a solution approach based on Benders decomposition to
optimize the crew pairing and the aircraft routing at the same time. The linear
relaxation of the combined model was split into a master problem and a
subproblem by Benders decomposition. Then, both problems were solved by
column generation. In the work of Cordeau et al., the aircraft routing formed the
master problem and the crew-pairing problem formed the subproblem, while in the
work of Mercier et al., the relationship was reversed. Other contributions to
improve the crew-pairing solution by incorporating other planning problems are to
be found in the works of Klabjan et al. (2002) and Cohn and Barnhart (2003).

Particularly interesting is the integrated model of fleet assignment and
passenger mix introduced by Barnhart et al. (2002) to generate improved solutions.
This itinerary-based fleet assignment model was able to capture network effects
and estimate spill and recapture of passengers more accurately. Due to the size of
the model, the problem was solved by a two-step approach. First, the problem’s
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relaxed linear program (LP) was solved by column and row generation, and then an
integer solutionwas obtained through branch and boundwith no newcolumns generated.

In this paper, we propose a different integrated model that combines the fleet
assignment with the cargo routing, instead of the passenger mix, to obtain better
solutions. The passenger revenue is simply estimated linearly in our integrated
model. Because of the nature of the cargo business, the cargo flow is modeled in a
very different way from the key path approach used by Barnhart et al. (2002) in
their work on the passenger mix model. Unlike passengers, cargo has no strong
preference for a particular itinerary, as long as it can be delivered on time. There are
also no available industry data to calculate the spill cost and the recapture rate for
the cargo flow. Furthermore, for some airlines, cargo is allowed to transfer between
different aircraft only at the hub, while there are no equivalent constraints for
passengers.

Besides the integration model above, the main contributions of this paper also
include the introduction of a Benders decomposition-based algorithm. A set of
computational experiments are carried out and the results show that our algorithm
converges very fast for all test scenarios.

The rest of this paper is organized as follows: “Mathematical formulation”
introduces the notation used in this paper and presents the mathematical
formulations. The solution approach based on the Benders decomposition algorithm
is described in “Solution methodology.” In “Computational experiments,” the
computational experiments and their results are reported. The conclusion and
direction for future work are discussed in the final section.

2 Mathematical formulation

We based our models on the planning problems faced by a major Asia-Pacific
combination carrier. It operates a weekly flight schedule through a passenger
network with six different fleets and a freighter (airplane carrying only cargo)
network with only one fleet. The entire network has only one hub.

We developed our formulation based on a 1-week wrapped-around timeline and
an underlying graph that consists of a number of time–space networks indexed by
the fleet types. This graph of fleeted time–space networks is commonly used in
airline problems (Hane et al. 1995). In a time–space network for a specific fleet
type, such as the one given in Fig. 1, a node is associated with a station and an

` ``
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Fig. 1 A time–space network
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arrival or departure event. The arcs in the network represent either the flight legs
from one station to another or the ground arcs linking two nodes on the same
station between two event time points.

Before describing the mathematical formulations, we first introduce the
following notations:

Notation

L The set of legs in the flight schedule indexed by i
E The set of different fleet types indexed by e
S The set of stations indexed by s
T The set of arrival and departure event times at all stations in

a week, indexed by tj. The event at tj occurs before the
event at tj+1. If |T|=m , tm is the last event before the count
time, and t1 is the first event after the count time. The count
time is a specific time point in a week used to count the
number of aircraft in the schedule. To facilitate the
counting, the count time is best chosen at a time when
most of the aircraft are on the ground

N The set of nodes in the fleeted time–space networks
indexed by n or (e, s, tj). Here, e∈E, s∈S, tj∈T. To elaborate,
for each fleet type e, there is an associated time–space
network, with the node set {n=(e, s, tj)| s∈S, tj∈T}

O(ct) The set of legs that pass the count time
I(n) The set of inbound legs to node n or (e, s, tj)
O(n) The set of outbound legs from node n or (e, s, tj)
ce0ð Þi The operational cost, including the cost of fuel, handling,

take-off, and landing
τ ei The estimated passenger revenue of flying leg i with fleet

e, which is a linear function of the seat number and the
block time of this leg. The block time is the time from
when the plane leaves the gate at the departure station to
when it arrives at the gate of the arrival station

cei The cost of assigning fleet type e to leg i, which is the
operational fleet assignment cost minus the estimated
passenger revenue, written as cei ¼ ce0ð Þi � τ ei

Nume The number of aircraft in fleet type e
K The set of commodities indexed by k, which is defined as a

time-related origin–destination cargo demand pair. K is
denoted by (o, t, Do, To, Tw), where o∈S is the cargo origin;
t∈S is the cargo destination; Do is the day on which the
cargo is ready for shipment at the origin, from Monday to
Sunday; To is the ready time for shipment at the origin,
either in the morning, at noon, or in the evening; and Tw is
the time window for the cargo to reach the destination,
1 day (24 h) or 2 days (48 h)

Pf(k) The set of feasible paths or itineraries for commodity k
di Cargo capacity of leg i∈L, which is determined by the fleet

type assigned to the leg
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Bk Demand for commodity k
rkp Per unit revenue of flowing commodity k on path p

δpi ¼ 1; if i 2 p
0; otherwise

�
This is an incidence coefficient, i.e., it is 1 only if path p
includes leg i

Decision variables

xei ¼
1; if flight leg i is assigned
to fleet type e;
0; otherwise

(
ge;s; tj;tjþ1ð Þ The number of aircraft of fleet type e that are

on the ground at station s immediately after
event time tj or just before event time tj+1

ykp The amount of commodity k on path p

2.1 Basic fleet assignment model

Given a flight schedule and a set of fleets, the fleet assignment is made to determine
which fleet to assign to each leg, with the objective of minimizing the total
assignment cost or maximizing the total fleet assignment contribution. The fleet
assignment problem (FAM) has been well studied in airline problems (Abara 1989;
Subramanian et al. 1994; Hane et al. 1995; Rushmeier and Kontogiorgis 1997).

The mathematical formulation of the basic fleet assignment model (Hane et al.
1995) is:

min
X
i2L

X
e2E

cei x
e
i (0)

subject to:

ge;s; tj�1;tjð Þ þ
X
i2I nð Þ

xei ¼ ge;s; tj;tjþ1ð Þ þ
X
i2O nð Þ

xei ;8n ¼ e; s; tj
� � 2 N ; e 2 E (1)

X
s2S

ge;s; tm;t1ð Þ þ
X

i2O ctð Þ
xei � Nume;8e 2 E (2)

P
e
xei ¼ 1; 8i 2 L

xei 2 0; 1f g; 8i 2 L; e 2 E
ge;s; tj;tjþ1ð Þ � 0; 8e 2 E; s 2 S; tj;tjþ1 2 T

(3)

The objective Eq. (0) minimizes the total fleet assignment costs or maximizes
the total passenger revenue minus operational costs. The constraints in Eq. (1)
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ensure the conservation of flow balance on each fleeted time–space network. That
is, aircraft going into a station s at a time point tn must leave the same station at
some other time later. The constraints in Eq. (2) ensure that the number of every
fleet type in use does not exceed the total number available of that fleet type. The
final set of constraints (Eq. 3) can be regarded as linking or side constraints
imposed on all the time–space networks. They ensure that each flight is covered
once, and only once, by a fleet type.

2.2 Cargo routing model

Given the forecasted cargo demand and a fleeted flight schedule in which all legs’
fleet types are known, cargo routing maximizes the revenue of the commodity flow
without exceeding either aircraft capacity or the time window. Similar to passenger
routing, cargo routing with multiple origin–destination demand pairs can be
modeled as a multicommodity network flow (MCNF) problem. MCNF has been
studied extensively (see Ahuja et al. 1993 for a thorough description). For the
solution methodology, Jones et al. (1993) studied the impact of three different
formulations on the decomposition solution approach; namely, the node-arc, the
path, and the tree formulations. Their results showed that the second formulation
outperforms the other two in general cases. We adopt this path formulation in our
approach too.

For the air cargo routing problem studied here, three additional side constraints
have to be satisfied. First, the carrier allows cargo to be transferred from one
aircraft to another only at the hub and at no other stations. Second, if transferring
happens at the hub, the transit time between the two connected legs must be longer
than the minimum cargo handling time. We supposed in this modeling that there
was a common minimum cargo handling time for transfers between passenger
aircraft, whatever the aircraft type. Third, if a cargo path does not pass through the
hub, the legs covered must fly in one direction, while for a path transferring at the
hub, the legs can change the flying direction only when leaving the hub. The single
flying direction is ensured in our study by restricting the number of legs in a path.
Explicitly modeling the time window constraints and the side constraints will result
in a very complicated model. To capture these complex rules while maintaining the
tractability, we apply a two-step modeling approach. Firstly, all feasible paths that
satisfy the time window and the side constraints are generated for all commodities.
Then, an MCNF path formulation with only the columns of feasible paths and rows
of capacity and demand constraints is set up.

To view the cargo routing model (CRM) in a nutshell, we first simplify the
presentation by ignoring the fleet types and the additional side constraints. In other
words, we simply assume that there is only one time–space network defined by the
flight legs, and the flow variables y along the paths are well defined as in MCNF.
Then, the path-oriented CRM is:

max
X
k2K

X
p2Pf kð Þ

rkpy
k
p (4)
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subject to: X
k2K

X
p2Pf kð Þ

ykpδ
p
i � di; 8i 2 L (5)

X
p2Pf kð Þ

ykp � Bk; 8k 2 K (6)

ykp � 0; 8p 2 Pf kð Þ; k 2 K (7)

The objective (Eq. 4) maximizes the total cargo revenue. The capacity constraints
in Eq. (5) restrict the total cargo flown on a leg i to its cargo capacity di. By flow the
constraints in Eq. (6), the cargo actually shipped is less than or equal to the demand.

2.3 Integrated model

For combination carriers, the network usually can be divided into two subnetworks
according to services, one for the passenger fleet flow and the other for the cargo
fleet flow. Because the freighter cannot be assigned to passenger flights, and vice
versa, the fleet assignment should be modeled separately for these two networks.
On the contrary, cargo routing must take account of the capacity available on both
freighter and passenger networks simultaneously, because cargo can also flow on a
passenger flight, in the belly of the passenger aircraft. The feasible paths are thus
constructed over the entire network.

The integrated formulation comprises the fleet assignment model and the CRM,
but ignores the aircraft routing problem. The aircraft routing problem determines
the sequence of flights, or routes, for each individual aircraft such that all legs are
flown exactly once and each aircraft visits maintenance stations at regular intervals
(Barnhart et al. 1998a). One may want to incorporate the aircraft routing model
because one side constraint in the CRM requires cargo to be transferred to other
aircraft only at the hub. Therefore, a truly integrated model would be able to
identify different physical aircraft or tail numbers and involve three sequential
problems. The first-stage problem would deal with the fleet assignment, the
second-stage, with the aircraft routing, and the third-stage, with the cargo routing.
Nevertheless, we argue that our two-stage integrated model approximates the
actual three-stage problem very well for the carrier in question. This is because for
most spoke stations, the frequency of flights is quite low, and so, to minimize the
number of aircraft used at that station and to avoid having unnecessary aircraft on
the ground overnight, the aircraft flying the arrival flight is usually assigned to the
immediate departure flight. As a result, the same fleet types for the two connecting
legs can be reasonably taken to imply the same physical aircraft. Although this is
not the case for the hub, we do not care about the physical aircraft because cargo is
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allowed to transfer at the hub. Our two-stage integrated model, therefore, is a
reasonable approximation to the actual problem.

To obtain the integratedmodel, we combine the passenger FAM, the freighter FAM,
and the CRM together, and link them by multiplying the right-hand sides of the CRM
capacity constraints with the fleet assignment variables. For a combination carrier that
has only one type of freighter, the fleet assignment is not required for freighter flights.
The integrated model thus includes only the passenger FAM and the CRM.

Because the fleet assignment and the cargo routing are determined simultaneously,
the feasible paths are not fixed but altered whenever the fleet assignment changes. To
accommodate this uncertainty, all potential feasible paths must be included in the
integrated model. A direct path from the origin to the destination of a commodity is
regarded as potentially feasible if it satisfies the time window constraint, the minimum
transit time at the hub, and the requirement of the single flying direction. LetP(k) denote
the set of potential feasible paths for commodity k. The potential feasible path is
generated based on the nonfleeted flight schedule and becomes valid as soon as all
sequential pairs of flights, connected at a spoke, in this path are assigned with the same
fleet type.

Let L(pax) be the set of passenger legs, and E(pax) be the set of passenger fleets.
Let L(frt) denote the set of freighter legs and E(frt) be the set of freighter fleets (this
set has only one element for the carrier in question). Then, we have L=L(pax)∪L
(frt) and E=E(pax)∪E(frt). The cargo capacity of a fleet type is denoted by de, e∈E.
To capture the feasible path correctly, we consider the fleeted time–space networks
again. Let N(pax) be the set of nodes in the passenger network. Instead of the
constraints in Eq. (5), there will be a capacity constraint for each leg and fleet type
combination. To define the flow variables y on the fleeted time–space networks, we
divide the set P(k) into two subsets. The set PT(k) contains the paths transferring at
the hub, and the other set, PD(k), contains the rest of the paths.

Because every path p in the set PT(k) may be formed from subpaths from two
fleeted networks, we split it into two subpaths, i(p) arriving at the hub and o(p)
departing from the hub (Fig. 2), each of which represents a feasible subpath on the
fleeted networks. Accordingly, the set PT(k) is divided into PIT(k) and POT(k),
which contain all i(p) and o(p), respectively, for commodity k. The flow variables
are then defined for every path or subpath and every fleet combination. Let yk;ep ;

yk;ei pð Þ;y
k;e
o pð Þ denote the decision variables corresponding to the path and subpath

flown by fleet type e. Let rkp and rki pð Þ be the associated objective coefficients for

Origin Destination

HUB

i(p)

o(p)

Fig. 2 A transferring path
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yk;ep and yk;ei pð Þ , respectively. Note that r
k
i pð Þ denotes the unit revenue generated by

the whole path p, and not by its subpath i(p).

The integrated formulation is:

max
X
k2K

X
p2PD kð Þ

X
e2E

rkpy
k;e
p þ

X
i pð Þ2PIT kð Þ;
p2PT kð Þ

X
e2E

rki pð Þy
k;e
i pð Þ

0BBB@
1CCCA

�
X

i2L paxð Þ

X
e2E paxð Þ

cei x
e
i

(8)

subject to:

ge;s; tj�1;tjð Þ þ
X
i2I nð Þ

xei ¼ ge;s; tj;tjþ1ð Þ þ
X
i2O nð Þ

xei ;8n

¼ e; s; tj
� � 2 N paxð Þ; e 2 E paxð Þ

(9)

X
s2S

ge;s; tm;t1ð Þ þ
X

i2O ctð Þ
xei � Nume;8e 2 E paxð Þ (10)

X
e2E paxð Þ

xei ¼ 1; 8i 2 L paxð Þ (11)

xei ¼
0; i 2 L paxð Þ; e 2 E frtð Þ
0; i 2 L frtð Þ; e 2 E paxð Þ
1; i 2 L frtð Þ; e 2 E frtð Þ

: (12)

X
k2K

X
p2PD kð Þ

yk;ep δpi þ
X
k2K;

X
i pð Þ2PIT kð Þ
p2PT kð Þ

yk;ei pð Þδ
i pð Þ
i þ

X
k2K;

X
o pð Þ2POT kð Þ

p2PT kð Þ

yk;eo pð Þδ
o pð Þ
i

� xei d
e; 8i 2 L; e 2 E

(13)

X
p2PD kð Þ

X
e2E

yk;ep þ
X

i pð Þ2PIT kð Þp2PT kð Þ

X
e2E

yk;ei pð Þ � Bk; 8k 2 K (14)
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X
e2E

yk;ei pð Þ ¼
X
e2E

yk;eo pð Þ;8p 2 PT kð Þ; k 2 K (15)

xei 2 0; 1f g;8i 2 L; e 2 E; ge;s; tj;tjþ1ð Þ � 0; 8e 2 E paxð Þ; s 2 S; tj; tjþ1 2 T;

yk;ep � 0; 8p 2 PD kð Þ; k 2 K; e 2 E;

yk;ei pð Þ; y
k;e
o pð Þ � 0; 8i pð Þ 2 PIT kð Þ; o pð Þ 2 POT kð Þ; p 2 PT kð Þ; k 2 K; e 2 E;

The objective (Eq. 8) maximizes the total cargo and passenger profit. The first
part is cargo revenue contributed by the passenger network and the freighter
network. The second part is the passenger profit. Because the freighter legs’
assignment costs are constant (remember, there is only one freighter type), they do
not appear in the objective function. We include only variables for subpath i(p), but
not for o(p), in the objective function to avoid the double-counting of revenue. The
first three sets of constraints (Eqs. 9, 10, 11) are the constraints of the passenger
FAM. By Eq. (12), the condition that a freighter cannot be assigned to a passenger
leg is enforced, and vice versa. Also, all the variables xei , i∈L(frt), and e∈E(frt) are
assigned to 1, as only one freighter type is available for the carrier in question. The
rest of the constraints (Eqs. 13, 14, 15) are for the CRM. The set of inequations (13)
are capacity constraints, and the set of inequations (Eq. 14) are the demand
constraints. By Eq. (15), the flow consistency along a transferring path is ensured.

3 Solution methodology

One would expect that the real-life applications of problems (Eqs. 8, 9, 10, 11, 12,
13, 14, 15) are too large to be solved by general mixed-integer programming codes.
The integrated model, however, naturally decomposes into two subproblems that
are less difficult to solve. For any feasible solution to constraints (Eqs. 9, 10, 11,
12), problems (Eqs. 8, 9, 10, 11, 12, 13, 14, 15) reduce to a cargo routing problem.
This observation motivates the development of the solution approach based on
Benders decomposition (Benders 1962). Benders decomposition is a resource–
directive decomposition method. It can be applied to linear programming, mixed-
integer programming, and nonlinear programming problems. In a general sense,
Benders decomposition can be viewed as a dual form of column generation
(Bertsimas and Tsitsiklis 1997). It reformulates a problem by replacing part of the
variables with constraints. As normally the number of constraints to replace the
variables is enormous, the reformulated problem is solved in an iterative way,
where active constraints are generated and added through the iteration. The
iteration stops when optimality is reached. We will use this framework to
reformulate our integrated problem in the next subsection, in which cargo flow
variables are replaced by constraints involving only fleet assignment variables.
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3.1 Benders reformulation

For the given value x; g satisfying fleet assignment constraints (Eqs. 9, 10, 11, 12),
the integrated model reduces to the following Benders primal subproblem that
involves only cargo flow variables:

max
X
k2K

X
p2PD kð Þ

X
e2E

rkpy
k;e
p þ

X
i pð Þ2PIT kð Þ;p2PT kð Þ

X
e2E

rki pð Þy
k;e
i pð Þ

0@ 1A (16)

subject to:P
k2K

P
p2PD kð Þ

yk;ep δpi þ
P
k2K;

P
i pð Þ2PIT kð Þ
p2PT kð Þ

yk;ei pð Þδ
i pð Þ
i þ P

k2K;

P
o pð Þ2POT kð Þ

p2PT kð Þ

yk;eo pð Þδ
o pð Þ
i

� xei d
e;8i 2 L; e 2 E

(17)

X
p2PD kð Þ

X
e2E

yk;ep þ
X

i pð Þ2PIT kð Þp2PT kð Þ

X
e2E

yk;ei pð Þ � Bk; 8k 2 K (18)

X
e2E

yk;ei pð Þ ¼
X
e2E

yk;eo pð Þ; 8p 2 PT kð Þ; k 2 K (19)

yk;ep � 0;8p 2 PD kð Þ; k 2 K; e 2 E;

yk;ei pð Þ; y
k;e
o pð Þ � 0; 8i pð Þ 2 PIT kð Þ; o pð Þ 2 POT kð Þ; p 2 PT kð Þ; k 2 K; e 2 E;

After the passenger fleet assignment variables are fixed, the cargo capacity of
every passenger leg is fixed accordingly. With the knowledge of the fleet
assignment, the infeasible paths are excluded from the model. Because only one
fleet type is assigned to a leg, at most, one of the flow variables fyk;ep : e 2 Eg
defined for a feasible path p is nonzero. For ease of presentation, we can combine all
of these variables together and replace them with a single flow variable ykp , which is
fleet independent. Similarly, because all but one of the capacity constraints defined
for a leg has a zero right-hand side, we aggregate the constraints together to form a
single capacity constraint. Given the fleet assignment, it is known to which fleet the
cargo is transferred to at the hub. We can now combine the two subpaths into an
origin–destination path, and therefore, the constraints in Eq. (19) are redundant.
After these simplifications, the primal subproblem becomes equivalent to the simple
CRM of the previous section.

max
X
k2K

X
p2Pf kð Þ

rkpy
k
p (20)
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subject to: X
k2K

X
p2Pf kð Þ

ykpδ
p
i �

X
e2E

xei d
e; 8i 2 L (21)

P
p2Pf kð Þ

ykp � Bk; 8k 2 K

ykp � 0; 8p 2 Pf kð Þ; k 2 K
(22)

Let πi and i∈L, and σk and k∈K, be the dual variables associated with constraints
(Eqs. 21 and 22), respectively. The dual subproblem is written as:

min
X
i2L

X
e2E

xei d
e

� �
πi þ

X
k2K

Bkσk (23)

subject to: P
i2L

δpi πi þ σk � rkp;8p 2 Pf kð Þ; k 2 K

πi; i 2 L; σk � 0; k 2 K
(24)

As the zero vector serves as a feasible solution to the primal subproblem, we
note that it is always feasible and bounded by the objective value of its dual
subproblem. The following constraint is called an optimality cut in Benders
decomposition:

η �
X
i2L

X
e2E

xei d
e

� �
πi þ

X
k2K

Bkσk (25)

Here, π;σð Þ is an extreme point of the dual polyhedron Q, defined by:P
i2L

δpi πi þ σk � rkp;8p 2 Pf kð Þ; k 2 K

πi; i 2 L; σk � 0; k 2 K

Let PQ be the set of extreme points of Q.
The integrated mixed-integer model (Eqs. 8, 9, 10, 11, 12, 13, 14, 15) can be

reformulated as:

max η�
X

i2L paxð Þ

X
e2E paxð Þ

cei x
e
i (26)

subject to:

η �
X
i2L

X
e2E

xei d
e

� �
πi þ

X
k2K

Bkσk; π;σð Þ 2 PQ

� �
(27)
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ge;s; tj�1;tjð Þ þ
X
i2I nð Þ

xei ¼ ge;s; tj;tjþ1ð Þ þ
X
i2O nð Þ

xei ; 8n ¼ e; s; tj
� � 2 N paxð Þ; e 2 E paxð Þ

(28)

X
s2S

ge;s; tm;t1ð Þ þ
X
i2O eð Þ

xei � Nume; 8e 2 E paxð Þ (29)

X
e2E paxð Þ

xei ¼ 1; 8i 2 L paxð Þ (30)

xei ¼
0; i 2 L paxð Þ; e 2 E frtð Þ
0; i 2 L frtð Þ; e 2 E paxð Þ
1; i 2 L frtð Þ; e 2 E frtð Þ

8<: (31)

xei 2 0; 1f g; 8i 2 L; e 2 E
ge;s; tj;tjþ1ð Þ � 0; 8e 2 E paxð Þ; s 2 S; tj;tjþ1 2 T

This model (Eqs. 26, 27, 28, 29, 30, 31) is called the Benders master problem.
Compared with the original model, the Benders reformulation has fewer variables
but contains more constraints, although most of these constraints are inactive in the
optimal solution. Instead of enumerating them explicitly, we start with a relaxation
of the master problem without Benders cuts and generate them on the fly by solving
the subproblem. A Benders relaxed master problem is defined by Eqs. (26 and 28,
29, 30, 31), and a subset of Benders cuts by Eq. (27).

3.2 Solution algorithm

This algorithm is developed based on Benders decomposition. Each iteration
solves a relaxed master problem to integral optimality, and the objective value
becomes the updated upper bound, as not all constraints are included in the solving.
A subproblem is set up and solved using the master problem solution. This
constitutes a feasible solution to the integrated model, and its value can serve as a
lower bound. Hence, the lower bound is updated from the best subproblem
objective value obtained so far. If the relative difference between the upper and
lower bounds is within a designated tolerance ζ, the algorithm stops and an optimal
solution of the original problem is found. Otherwise, a Benders optimality cut is
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constructed from the dual subproblem solution and is added to the relaxed master
problem. The same process is repeated until optimality is reached.

4 Computational experiments

To study the algorithm’s performance, computational experiments were performed
on a set of test scenarios based on available data about the airline. The weekly flight
schedule of the airline contains 1,404 passenger legs and 201 freighter legs. Six
passenger fleets and one freighter fleet are used to cover all flights. Besides this
entire schedule, we generated four of its subschedules. The commodities and their
demands are generated from the historical data. All cost coefficients are derived
from the airline’s annual report. The potential feasible paths for all commodities
over the network (both passenger and freighter subnetworks) are generated for
every test instance, as described in the previous section. Table 1 describes our five
test data instances.

4.1 Computation results

The algorithm was implemented in C++. CPLEX8.1 was used to solve the master
problems and the subproblems. The master problem was solved by the mixed-
integer optimizer that uses the branch-and-cut method. The dual simplex algorithm
with the steepest edge pricing was employed to solve the LP relaxation at each
node in the branch-and-bound tree. The subproblem was solved by primal simplex
optimizer. All experiments were performed on a computer with an 866-MHz CPU
and 256 MB of RAM. The relative convergence tolerance ζ is set to 0.1%. Table 2
reports the computational results for all test instances

It is shown in Table 2 that the number of iterations is quite small and the
convergence is very fast for every test instance. D2 spent only 1.3 s and three
iterations to obtain the optimal solution. Even for the full instance, D5, the
optimality was reached within 116.7 s by four iterations. This demonstrates the
efficiency of the algorithm for our problem.

Also, we applied a sequential approach to plan the fleet assignment and the
cargo routing. Compared to results of the integrated approach, the annual cargo
traffic decreased 12.3% and the annual cargo and passenger profit decreased

Table 1 The characteristics of data instances

Instance Total number
of passenger
legs |L(pax)|

Total
number of
freighter
legs |L(frt)|

Total number
of passenger
fleets |E(pax)|

Total
number of
freighter
types

Total
number of
commodities
|K|

Total number of
potential feasible
paths

P
k

p kð Þj j

D1 62 0 6 0 63,798 573
D2 102 0 6 0 63,798 2,051
D3 520 201 6 1 63,798 28,221
D4 884 151 6 1 63,798 73,880
D5(full) 1,404 201 6 1 63,798 173,285
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12.7%. Although an ideal measure of the integrated approach should be the
comparison with the actual fleet assignment planning and cargo routing in practice,
these figures provide some indications on how important it is to take account of
cargo routing when determining fleet assignment.

4.2 Comparison with two other Benders decomposition variants

This algorithm spent only a few minutes to obtain the best solution of our problem.
As this is a planning problem, time is not normally a tight constraint and this is well
within the bounds of acceptability. The application of the basic algorithm was thus
successful for our problem.

In an attempt to further accelerate the convergence of the algorithm, we
implemented two variants of Benders decomposition: the Pareto-optimal cut
generation (Magnanti and Wong 1981) and the ɛ-optimal approach (Geoffrion and
Graves 1974). Pareto-optimal cut generation exploits the fact that, in the standard
Benders decomposition approach, there may be primal degeneracy in the dual
subproblem, and so, multiple Benders cuts are possible: the Magnanti and Wong
procedure provides a way to find strong cuts. The ɛ-optimal approach attempts to
save computation time by solving the relaxed master problem to find an ɛ-
improved solution rather than full optimality. This approach terminates and an
optimal solution is obtained when it is infeasible to find an ɛ-improved solution for
the relaxed master problem. Numerical results are reported in Table 2. It is shown
that there were no improvements obtained by these efforts. The Pareto-optimal cut
generation approach must solve one more linear program at each iteration, and the

Table 2 Computational results

Approach Instance Convergence
CPU time (s)

Number of
Benders iterations

Times per
iteration (s)

Benders final
relative gap (%)

Basic algorithm D1 3.1 11 0.3 0.02
D2 1.3 3 0.4 0.09
D3 14.7 4 3.7 0.08
D4 103.5 13 8.0 0.08
D5 116.7 4 30.0 0.09

Pareto-optimal cut
generation
approach

D1 4.2 11 0.4 0.02
D2 1.9 3 0.6 0.09
D3 36.8 4 9.2 0.09
D4 870.9 11 79.2 0.06
D5 2,254.2 5 450.8 0.07

ɛ-Optimal
approach

D1 5.4 18 0.3 N/A

D2 1.4 3 0.5 N/A
D3 14.8 5 3.0 N/A
D4 Does not

converge
in 24 h

D5 565.0 14 40.4 N/A
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solution time increases very quickly with the problem size. For the ɛ-optimal
approach, it took an extremely long time to prove the infeasibility of the last
relaxed master problem.

5 Conclusion

To enhance the fleet assignment model, we proposed an integrated approach that
incorporates the cargo routing into the fleet assignment. In contrast to passenger
traffic, cargo has no strong preference on the specific itinerary, as long as its
commitment is satisfied. There is also no available industry data to calculate the
spill cost and the recapture rate for the cargo flow. Moreover, cargo is allowed to
transfer between different aircraft only at the hub, while this requirement is not
applicable to the passenger. The cargo flow is thus modeled in a way different from
the passenger mix model. Computational results show that our Benders decom-
position-based approach can generate the optimal solution within several minutes
(very fast for planning problems) with an improved estimate of total profit,
compared with that generated by the isolated fleet assignment.

It is worthwhile to restate that the passenger revenue is only linearly estimated
in our integrated model. For combination carriers, passenger delivery is still their
main source of profit; hence, the passenger flow problem should be properly
modeled. Furthermore, our integrated model is an approximation of the three-stage
problem that includes the aircraft routing. We believe that the integration of fleet
assignment, cargo routing, and passenger mix, and the integration of fleet
assignment, aircraft routing, cargo routing, and/or passenger mix are interesting
problems to explore in the future. Moreover, the forecasted cargo demand is
deterministic in our problem. This simplification may cause the solution to be less
convincing because the demand is unknown at the time of planning. Therefore,
another interesting research direction would be to explore ways to capture the
demand uncertainty.
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P. Bartodziej . U. Derigs . M. Zils

O&D revenue management
in cargo airlines—
a mathematical programming approach

Abstract In this paper we present a mathematical programming based approach for
revenue management in cargo airlines. The approach is based on a modified version
of a multicommodity network flow model which has been developed in a decision
support approach for schedule planning in cargo airlines. We think that using the
same concept for planning and revenue management is essential for consistency of
planning and operation. To meet the real-time requirements of revenue management
special computational strategies for solving the large models are necessary.

Keywords Revenue management . Mathematical programming .

Multi-commodity flow . Column generation . Simulation study

1 Introduction

Revenue management deals with the problem of effectively using perishable re-
sources or products in industries or markets with high fixed cost and low margins,
which are price-segmentable (see Cross 1997; McGill and van Ryzin 1999; Talluri
and van Ryzin 2004). Revenue management is a complex problem which has to
be supported by sophisticated forecasting methods/systems and optimization
methods/systems.

Revenue management has its origin and has found broad application in the
airline business, and here especially in passenger flight revenuemanagement. Today
almost all airline passenger revenues of over US $310 billion p.a. are actively
managed through revenue management, and the industry claims to have generated
as much as US $500 million in additional profits from the early 1980s onward (see
Pompeo and Sapountzis 2002). Only recently, the concepts which have been
developed for the passenger sector have been adequately modified and transferred
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to the cargo sector. As demonstrated later in this paper, an immediate transfer of
the concepts developed for passenger airlines to the cargo airlines is not feasible
since the two kinds of business, although at first sight offering a similar kind of
transportation service, face differences in product type and in productionwhich have
consequences for scheduling and capacity planning as well as revenuemanagement.

While the practice of revenue management is well-established in the passenger
airline industry, and there is a vast amount of literature on concepts, methods, and
implementations, the revenue management concept is underdeveloped in the
cargo industry and there is only a small number of publications focussing on this
application.

Kasilingam (1996) and Billings et al. (2003) analyze the major differences be-
tween passenger and cargo revenue management. While our approach is assuming a
pure cargo airline with certain and fixed capacities, Kasilingam (1996) is concerned
with the integrated management of the available belly space after accommodating
passengers which in addition to forecasting cargo market demand requires to
forecast capacity available for cargo sale. Slager and Kapteijns (2004) describe the
implementation of cargo revenue management at KLM, which is based on calcu-
lating for every request a contribution margin, i.e., the revenue minus the variable
costs related to handling, fuel etc., which is then checked against a minimum
required margin, the so-called contract entry condition. These conditions are ad-
justed by route managers on a daily basis using information on historic and current
booking profiles, current capacities and the market knowledge of the manager. This
paradigm, which is called margin management principle, is very much in the flavor
of the bid-pricing policy which is widely used in passenger revenue management.

Kleywegt and Papastavrou (1998, 2001) propose to model the cargo revenue
management problem as dynamic stochastic knapsack problem. Yet, the approach
allows only one capacity restriction and becomes computational intractable if
extended to the two dimensional capacity situation in cargo revenue management.
Pak and Dekker (2004) describe a bid-price acceptance policy for cargo revenue
management which is based on (approximatively) solving a multidimensional on-
line knapsack problem. This approach respects the multi-dimensionality of cargo
capacity and demand, yet, it does assume that for each booking request the itinerary,
i.e. the flights its uses is uniquely defined. With this assumption the flexibility (and
also some of the complexity) of cargo routing versus passenger routing is neglected.

Our approach is different from all the above mentioned in so far, as it does not
treat revenue management as an isolated problem, but respects that the decisions or
alternatives at this operational level are constrained through structural decisions
and capacity allocations made already on a higher and earlier management level:
tactical planning, and, that the decisions made on these two levels should be driven
through the same goal and coordinated.

In any airline, market-oriented planning on the tactival level requires the design
of a profitable schedule and the allocation of resources like airplanes, staff, ground
capacities etc. Here the objective is to maximize contribution to profit which is
achieved by generating schedules and assigning airplanes allowing high load fac-
tors. When solving this complex design and decision problem highly sophisticated
market-models are used to estimatemarket demand. The results of such forecasts are
then used as data for schedule design and resource allocation.

Etschmeier and Matheisel (1985) describe the concept of an iterative schedule
planning process based on two phases: schedule construction and schedule eval-
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uation. In schedule construction, a central scheduling department develops a draft
schedule, and in schedule evaluation, this schedule is evaluated by various op-
erating departments in terms of feasibility, cost, and economic value. Based on these
evaluations, the draft schedule is revised and a modified schedule is generated for a
new evaluation.

While this generic process is similar for all types of airlines, the evaluation of
schedules is quite different for cargo airlines and requires a special approach. In
Antes et al. (1998) we have developed a mathematical model for evaluating cargo
schedules. The focus of our model is the determination of the contribution to profit,
that will accrue from a given schedule. For that purpose the model calculates the
so-called optimal freight flow considering yield and operating cost. Here a freight
flow is the assignment of demand to the capacities (flights) of a given schedule.
Thus, the planning problem is to “determine the freight flow with maximum con-
tribution to profit with respect to fixed market demand”.

For passenger airlines, Berge and Hopperstad (1993) have proposed the “Demand
Driven Dispatch”-concept. Here airplanes with different capacities but similar crew-
requirements are assigned to flights, depending on the actual demand/booking
situation to increase the load factor and contribution to profit. For this purpose so-
called swap-potentials for resources have to be evaluated in a pro-active manner by
(re-)solving fleet assignment problems and aircraft routing problems. This concept
has been generalized by Gershkoff (1998). Yet, the problem with these just-in-time
scheduling concepts is the complexity of identifying feasible changes/feasible sched-
ules, for instance with respect to maintenance constraints etc., in nearly “real time”
and the actual lead times to implement proposed changes in day-to-day operations.

Hence in operational control the schedule and the capacity allocation is assumed
to be fixed, and the problem is to adequately respond to bookings, e.g. the actual
market demand such that the yield obtained from the schedule is maximized. At this
point changes in the schedule and/or capacities are possible only at a marginal level,
and the dominant instruments for controlling efficiency are prizing (and over-) book-
ing strategies. Thus, conceptually thinking, the operational problem in cargo revenue
management is to “re-optimize freight-flows due to bookings and price-changes”.
And as we will show, this problem can be tackled by the same model and method
which has been developed for schedule evaluation on the tactical planning level.

Thus, in this paper we propose the application of the model and methods which
we have developed for medium term tactical planning to the short term operational
problem of revenue management. The motivation of this proposal and study is
twofold: First, we think that operational control and tactical planning should be
governed and guided by the same concepts and factors: objectives, constraints, and
data to minimize loss of profit potential during implementation and increase the
efficiency of the planning process. Secondly, as will be demonstrated in this paper,
the planning methods are functional on the operational level, too.

2 A conceptual model of air cargo transportation

A cargo airline offers the conceptually simple service to transport a certain amount
of goods from an origin to a destination within a certain time interval at a given
price. For this purpose the airline keeps and/or leases capacities for transporting
goods to, from, and between airports. The tactical planning problem of such air-
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lines is to design a (weekly) flight schedule of so-called legs which allows the most
profitable service of the estimated market demand for the next period (half a year,
say). Then, on the operational level booking requests have to be assigned to
specific flights of the fixed flight schedule.

There are several differences between the situation in passenger transportation
and cargo transportation which make the development of concepts, models and
systems for planning as well as revenue management more complex in the cargo
environment:

a) While the demand in the passenger sector is one dimensional (seat) and kind of
smooth, the demand in the air cargo sector is heterogenous and lumpy with
completely different capacity requirements for single booking requests (com-
pare for instance volume requirements for documents versus industrial ag-
gregates). This leads to a multi-dimensional characterization (weight, volume,
classification, handling needs etc.) of cargo units.

b) While passengers usually book return-flights, cargo demand is one-way in
general which leads to geographically unbalanced transportation patterns with
respect to structure and volume of cargo.

c) Yet, the most subtle difference is that passengers are booking so-called iti-
neraries, e.g. specific sequences of flight connections, so-called legs leading the
passenger from the origin to the destination of their journey. Thus, a passenger
booking a flight from Cologne (CGN) to Chicago (ORD) via Frankfurt (FRA)
and New York (JFK) on a given date, has to be given a seat reservation on three
specific flights (CGN, FRA), (FRA, JFK) and (JFK, ORD). In the cargo business
customers book a transportation capacity from an origin to a destination, with a
certain service level, e.g. within a certain time-window. In general, the cargo
customer is not interested in the specific routing of his package. Hence the airline
has some degree of freedom how and when to assign requests to specific flights
and this difference leads to different planning models.

For schedule evaluation as well as revenue management the key problem is to
“assignmarket demand to the schedule”. Market demand can be described as a set of
estimated and/or booked service requests. And such a request has several attributes
with the origin and destination airport being the dominant characteristic. Therefore,
such transportation requests are commonly referred to as O&D’s or O&D pairs in
the cargo airlines terminology. Conceptually, the object class OD of O&D’s can be
modelled as a complex 5-ary recursive relationship type between the entity type
AIRPORT, playing the role of an origin and destination respectively, TIME, playing
the role of availability and due time respectively, and PRODUCT with attributes
specifying the quantity (kg), the volume (m3) and the yield/freight rate ($/kg) etc.
The schedule on the other hand can be described as a set of so-called legs. The
concept of a leg stems again from the airlines terminology, meaning a direct flight
between two airports offered at the same time every week. Conceptually, we model
the object class LEG as a 4-ary recursive relationship type between the entity type
AIRPORT playing the role of an origin (from) and a destination (to) and TIME,
playing the role of a departure and an arrival time, respectively, with attributes
specifying the capacity of the leg (kg), the operating cost ($/kg) etc. The relevant
information reflecting ground handling, that is the time and cost for import, export,
and transfer of goods at the airports is modelled via a relationship type HANDLING
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associating the entity types AIRPORTand PRODUCT. Figure 1 gives the graphical
representation of this conceptual schema, using the common symbols of the entity
relationship model (cf. Elmasri and Navathe (2004)).

Note that all attributes mentioned above are data for the decisionmodel and have
to be instantiated. Now, the decision problem in planning as well as revenue
management, is captured in the relationship type/the association BOOKING be-
tween the entity types OD and LEG. More precisely the problem is to determine the
values of its attribute “amount” for every (OD, LEG)-pair. Or, in the terminology of
databases, the amount-attribute is a so-called “derived attribute” with the integrity
constraints defining feasible values as well as the evaluation of different asso-
ciations captured in a mathematical optimizationmodel. In tactical planning one can
think of initializing this model with no associations at all, i.e. the amount-values are
zero and, given the data for the entire (expected) demand, we have to simultaneously
“derive” optimal amount-values. When using this conceptual model in revenue
management, one can think of initializing the model with an eventually large num-
ber of fixed associations, which represent bookings or which are derived from
additional (expected) demand, and there is just one booking request which has to be
evaluated and associated on top.

In the following two sections we will introduce the mathematical optimization
models which represent and formalize this view of the decision problems associated
with the two scenarios.

3 The model for O&D schedule planning

Every flight schedule defines a so-called time-space network G=(V, E) with V being
the set of nodes representing the airports at a certain point of time. The arc set E is
composed from two subsets, a set of flight arcs which represent the legs and
connect the associated airports at departure and arrival time, respectively, and a set
of ground arcs which connect two nodes representing the same airport at two
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Fig. 1 Conceptual schema for air cargo transportation
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consecutive points in time. Associated with every leg/arc e2E is theweight capacity
ue measured in kg, the volume capacity ve measured in m3 and the operating cost ce
measured in $ per kg.

Now the different O&D’s define different commodities which have to be routed
through this network, and the so-called multi-commodity flow problem (see Ahuja
et. al. (1993)) is the problem to determine optimal assignments of O&D’s/com-
modities to legs/arcs such that (part of) the demand is routed from origins to des-
tinations. Figure 2 shows the representation of two specific itineraries connecting
Cologne (CGN) with Chicago (ORD) via Frankfurt (FRA) and New York (JFK),
and via Munich (MUC), respectively, in a time space network.

In ourmodels we use the symbol od for representing anO&D-commodity andOD
as the set of all commodities/O&D’s. Associatedwith a commodity/O&D od2OD is a
specific demand bod measured in kg, a value dod giving the volume per kg and a
freight rate or yield value yod measured in $ per unit of commodity od. For every leg
e2E let o(e) be the origin airport and d(e) be the destination airport. Also, let origin
(od) be the origin and destination (od) be the destination of od2OD, respectively.

The first formulation/mathematical model is the so-called arc-flow-model, a linear
program which is the immediate implementation of the conceptual model presented
in Fig. 1. Here we introduce decision variables xe, od giving the amount of commodity
od2OD which is transported over the arc e2E. This leads to the mathematical
formulation of the planning problem as an arc-flow multi-commodity flow model.

3.1 Arc-flow-model

max
P

od2OD

P
e2E

o eð Þ¼o odð Þ

yod � xe;od �
P
e2E

ce � xe;od

0B@
1CA

P
e2E
0 eð Þ¼i

xe;od �
P
e2E
d eð Þ¼i

xe;od
� bod if i ¼ o odð Þ
� �bod if i ¼ d odð Þ
¼ 0 else

8<:
for i 2 V ; od 2 ODP

od2OD
xe;od � ue for e 2 EP

od2OD
dodxe;od � ve for e 2 E

xe;od � 0

Time

CGN

FRA

MUC

JFK

ORD

Fig. 2 Itineraries in a time-space network
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This model is not very well suited, neither for the planning situation nor for an
adaption to revenue management. It does not capture the complex time-window
constraints associated with the demand, it does not contain any constraints from
ground handling etc. To be able to incorporate these and other constraints into the
decision, the so-called path flow formulation should be used which can also be
adapted rather nicely for use in revenue management.

The so-called path-flow model is based on the obvious fact that any unit tran-
sported from an origin to a destination has to be routed over a sequence of legs
(possibly only one leg), a so-called path or itinerary connecting the origin node with
the destination node in the network. A path or itinerary for an O&D/commodity od
is a sequence p=(l1,...,lr(p)) of legs li∈E, r(p)≥1 with the following properties

o l1ð Þ ¼ origin odð Þ
d lið Þ ¼ o liþ1ð Þ i ¼ 1; :::; r pð Þ � 1

d r pð Þð Þ ¼ destination odð Þ
:

Such a path p is called od-feasible if additional requirements are fulfilled which vary
with the problem definition. Here we consider several types of constraints which
concern due dates, transfer times and product compatibility. For every O&D/
commodity od we denote by Pod the set of od-feasible itineraries and by Swe denote
the union of all Pod sets. A path may be feasible for many different O&D’s. In our
model we have to distinguish these roles and consider multiple copies of the same
path/the same legs assigned to different commodities/O&D’s. Then the relation
between arcs/legs and itineraries is represented in a binary indicator δ: E×S→{0,1}

�e pð Þ :¼ 1 if leg e 2 E is contained in path p
0 else

�
:

Note that od-feasibility of paths can be checked algorithmically and, given an
itinerary p2Pod, we can calculate c pð Þ :¼ P

e2E
ce�e pð Þ ¼P

e2p
ce the operating cost as

well as yod pð Þ :¼ yod �P
e2p

ce the contribution to profit per kg of commodity od

which is transported over p. This calculation as well as the construction of the setPod

is done outside our model using a module called “connection builder” and is then
given to the model as input data. In the model we introduce a decision-variable f ( p)
for every p2Pod giving the amount (in kg) transported via p, and the problem is to
select the optimal combination of paths giving maximal contribution to profit which
again leads to a linear program.

3.2 Path-flow-model

max
X

od2OD

X
p2Pod

yod pð Þ f pð Þ (1)

s:t:
X

od2OD

X
p2Pod

�e pð Þ f pð Þ � ue 8e 2 E (2)
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X
od2OD

X
p2Pod

�e pð Þdodf pð Þ � ve 8e 2 E (3)

X
p2Pod

f pð Þ � bod 8od 2 OD (4)

f pð Þ � 0 8od 2 OD 8p 2 Pod: (5)

The advantage of the itinerary-based model over the leg-based model is the pos-
sibility to consider rather general and complicated constraints for feasibility of
transportation during the path-construction phase in the connection builder. Keep-
ing this complexity outside the optimization allows to apply the same standard (LP-)
solution procedure and standard LP-solver for a wide range of models representing
different planning situations.

Moreover, the path-flow-model allows for scaling, i.e. it is not necessary to
construct all feasible paths beforehand. Working with a “promising subset” of paths
only, reduces the size of the problem instance but may lead to solutions which
although not optimal in general, are highly acceptable in quality. Finally, applying
the delayed column generation technique allows to generate feasible paths on the run
during optimization and thus keeps problem size manageable throughout the op-
timization process. This model and algorithmic approach is the basis for the system
SYNOPSE (“System zur Netzoptimierung und Planung Strategischer Entscheidun-
gen”, which translates in English as “System for Network Optimization and Planning
of Strategic Decisions”) (see Antes et al. 1998), an interactive decision support
system for analyzing schedules. In Derigs and Zils (2001) we have applied the
schedule planning model to the strategic problem of analyzing alliances of cargo
airlines. In the following we will demonstrate how this concept and model can be
transferred to the operational level, i.e. to the problem of revenue management.

4 The model for O&D revenue management

The model in Section 3 has been developed for the problem to optimally assign an
expected demand to a fixed schedule. In revenue management, demand occurs over
a longer time period, a year say, and the limited resources have to be “booked”
sequentially. When a booking or reservation is made, the airline does not need to
assign the O&D to a specific itinerary immediately, it only has to ensure that at
operation time capacities are available, i.e. it has to ensure that at any time there
exists a feasible routing for all booked O&D’s. This situation and requirement is
captured in the following optimization model.

In this model we assume a set B of accepted bookings and we distinguish
between

– βk the demand which is already booked and
– bk the additional forecasted future demand for k2OD and
– a single booking request r for a commodity k(r)2OD with demand ~�r,
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and we assume an (expected) yield yk for every commodity k2OD. The model can
be used to evaluate the acceptability/profitability of a specific request r at a given
price yr and for “dynamic pricing”, i.e. the determination of theminimum acceptable
yield for request r.

4.1 Revenue-management-model RM (B, r)

max
X
k2OD

X
p2Pk

yk pð Þ f pð Þ (6)

s:t:
X
k2OD

X
p2Pk

�e pð Þf pð Þ � ue 8e 2 E (7)

X
k2OD

X
p2Pk

�e pð Þdkf pð Þ � ve 8e 2 E (8)

X
p2Pk

f pð Þ � bk þ �k 8k 2 OD (9)

X
p2Pk

f pð Þ � �k 8k 2 ODn k rð Þf g (10)

X
p2Pr

f pð Þ � �r þ ~�r (11)

f pð Þ � 0 8p 2 Pk; k 2 OD: (12)

Note that the application of RM (B, r) is started with no booking, i.e. βk=0,
k2OD, and no request, which is equivalent to the planning model from Section 3.
Then the set B is sequentially enlarged introducing accepted booking request. Thus
at any time the bookingmodelRM(B) which is obtained fromRM(B, r) by omitting r
and replacing inequality Eq. 11 by an additional inequality of type Eq. 10 for k=r is
feasible and we can start the solution of RM(B, r) from the optimal solution of RM
(B). Now the acceptability/profitability (and the option price) for request r depends
on the difference between the optimal values of RM(B, r) and RM(B).

Note that when solving RM(B, r) already booked requests may be rescheduled,
i.e. during the entire process booked commodities may be associated to different
(sets of) paths. Thus the model and solution process makes use of this flexibility.

We will only outline here the general approach for solving RM(B, r), which is based
on applying the column generation technique to the multi-commodity flow problem.
Solving RM(B) by any LP-technique we obtain an optimal dual solution with values

– we for every constraint of type Eq. 7,
– ze for every constraint of type Eq. 8, and
– σk for every constraint of type Eqs. 9, 10 and 11.
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Based on these values the reduced cost for an itinerary p2Pk, k2OD, is defined
as

c pð Þ :¼ yk �
X
e2p

ce þ we þ dkze
� �� �k

Thus, if an itinerary p2Pk has positive reduced cost ¼ �cðpÞ then transporting (one
unit of) commodity k over this itinerary increases the contribution to profit.

Such a path can be found by determining p*, the shortest path from origin(k) to
destination(k) with respect to the modified arc cost ce′ :=ce+we+d

kze. If the length of
p* exceeds yk−σk then no path of positive reduced cost exists. Otherwise, sending
flow over p* will increase the contribution to profit.

Yet, there is one problem remaining: The capacity δ of the shortest path p*will in
general not be equal to ~�r, the required amount of the current request r. If � � ~�r, we
will increase f ( p*) by ~�r (and eventually introduce the column associated with p*
into the constraint matrix) and we have solved RM (B, r). Otherwise, we can only
tentatively increase f ( p*) by δ, update ~�r :¼ ~�r � � and repeat the process, i.e. the
search for another path with unused capacity. More information on the difficulties
arising during the process and on several computationally effective strategies can
be found in Bartodziej and Derigs (2004). In the following section we will describe
the results from a simulation study which we have conducted for evaluating our
approach.

5 A simulation study for evaluating the O&D revenue management approach

We have applied the model and method described in Section 4 to a set of
benchmark instances. These instances were constructed from data obtained in a
marketing study (cf. Zils 1998, 1999). For several airlines O&D-matrices were
estimated using a simple gravity model. This study was conducted to support the
development and evaluation of models and systems for planning, and its results
have been adapted for generating the scenarios of our revenue management
simulation. From the different benchmark problems given in Zils (1999), we have
extracted three scenarios. The characterization of these three benchmark problem
instances P10, P64, and P79 is illustrated in Figs. 3–5.

The data of an instance is maintained in three relations/tables. The schemata of
these relations are given in Tables 1, 2, 3.

Note that in the leg table we store information on rotations (i.e. the
sequences of legs which are served by the same airplane). This information is
necessary to calculate the handling cost. We do not go into more detail on this
aspect here.

From this data instances for the schedule evaluation problem were generated
and solved to optimality to serve as the starting solution for the revenue manage-
ment process. During the revenue management process booking requests are
generated and evaluated solving problems of type RM (B, r), and if accepted they
initiate a modification of the production plan and updates of the forecast. This
relation between planning and revenue management is reflected in Fig. 6.
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In the revenue management simulation the (aggregate) O&D-quantities of the
planning model have been broken down to the level of od-booking requests in the
following way:

Let aod be an estimated total demand for a specific od2OD then we generated a
sequence α1

od,...,αn (od)
od with the following property:

Xn odð Þ

i¼1

�od
i ¼ aod and

aod

	1
� �odi � aod

	2
for i ¼ 1; :::; n odð Þwith g 1 > g 2 � 1:

Fig. 4 Characteristics of instance P64

Fig. 3 Characteristics of instance P10
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By this construction we ensure that the αi
od's are within a certain percentage

interval with respect to aod. Then we applied a random perturbation to obtain the
lumpy booking requests

~�od
i :¼ 1þ �ð Þ � �od

i with � 2 ��; �½ 

and a random sequence of all generated bookings was generated. Then, this
booking pattern of lumpy requests was used to define the ~�r-sequence and the RM
(B, r)-problem instances to be solved.

As we have mentioned already, the effectivity of any revenue management
method/system is not only driven by the optimization module, but is highly
depending on the soundness of the forecasting information. In our computational
study we could only simulate the influence of forecasting at a very rudimentary
level. Obviously, in a more practical evaluation one would have to integrate the
optimization model/system into an integrated environment containing forecasting

Fig. 5 Characteristics of instance P79

Table 1 Leg table (represents the schedule)

Attribute Type Default Example Comment

leg_id INTEGER – 815 Internal identification of leg
departure_station CHAR3 – JFK IATA-Code (mandatory)
departure_day 1..7 – 3 UTC-time (mandatory)
departure_time TIME – 15:20 UTC-time (mandatory)
arrival_station CHAR3 – ANC IATA-Code (mandatory)
arrival_day 1..7 – 4 UTC-time (mandatory)
arrival_time TIME – 08:15 UTC-time (mandatory)
weight_capacity INTEGER – 15,000 Capacity in kg (mandatory)
volume_capacity INTEGER – 125 Capacity in m3 (mandatory)
leg_fix_costs REAL – 320,000.00 Fixed costs in US$ (no payload)
leg_var_costs REAL – 0.08 Variable costs for one kg in US$
previous_leg INTEGER 0 814 Pointer to previous leg in rotation
next_leg INTEGER 0 816 Pointer to next leg in rotation
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and pricing modules. In our simulation study we used the following simple
forecast-update: Since in every iteration the actual booking ~�r; ~�r ¼ ~�od

j say,
represents part of the expected/forecasted demand bod of the associated O&D, we
have to update the remaining/forecasted demand. Yet, we did not reduce the
forecast by ~�od

j but by αj
od to reflect the difference between initial forecast and real

booking requests. Simple extensions of our simulation model could correlate the
change of the remaining demand with the δ-perturbation of the request, and, also
cancellations could easily be incorporated. In Fig. 7 the concept shown in Fig. 6 is
presented on a more detailed level.

The efficiency of our approach, i.e. its solution quality and its computational
effort is highly dependent on the implementation. And here we have to distinguish
between two main aspects which are strongly related and interdependent:

– the implementation of the basic column generation technique, and,
– the integration of the optimization into the revenue management process.

Table 2 O&D table

Attribute Type Default Example Comment

od_id INTEGER – 3,423 Primary key
origin CHAR3 – FRA IATA-Code
destination CHAR3 – JFK IATA-Code
category CHAR1 – S S=Standard, E=Express,

N=No specific time
available_day 1..7 – 2 In UTC-Time
available_time TIME – 21:30 In UTC-Time
due_day 1..7 – 3 In UTC-Time
due_time TIME – 16:45 In UTC-Time
weight INTEGER 0 412,34 Demand in kg
yield REAL 0.0 0.86 Average yield
density REAL 6.0 5.74 Average density

(IATA-Calculation)

Table 3 Handling table

Attribute Type Default Example Comment

airport_id CHAR3 – FRA IATA-Code
airline_designator CHAR2 – LH IATA-Code
od_category CHAR1 – S S=Standard, E=Express,

N=No special time
import_time INTEGER – 140 Time for import in minutes
import_cost REAL – 7.06 In US$ per ton
export_time INTEGER – 105 Time for export in minutes
export_cost REAL – 7.00 In US$ per ton
transfer_time INTEGER – 180 Time for transfer in minutes
transfer_cost REAL – 15.00 In US$ per ton
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We have developed about a dozen different strategies for solving RM(B, r)
based on different implementations of the column generation technique. In column
generation there is a trade-off between quality and speed depending on the
frequency of re-optimizing the master problem/calculating the actual dual prices. A
detailed description of these computational aspects is beyond the scope of this
paper. A computational study on these strategies is given in Bartodziej and Derigs
(2004).

Another strategy to reduce the computational effort is to relax the on-line
optimization requirement and to accept bookings, which are uncritical with respect
to capacity and apparently profitable without evaluation and optimization, and to
update the set of booked requests and construct a feasible freight flow using the
model in a batch processing kind of mode. Similarly, one could give up the
requirement to decide on the acceptance of requests sequentially one by one and to
accumulate sequences S=(r1, r2,...) of requests to blocks or batches and then decide
on which requests are accepted in one step. And here again one could follow two
strategies: to decide on the acceptance of the requests in S based on the optimal dual
prices for RM(B) or to re-optimize, i.e. to solve a variant of RM(B, r) obtained by
adapting inequality Eq. 11:

Freight Flow

Booking

Forecast
Schedule with

Acception and
Modification of
Production Plan

Operations

Planning Result: Market and Production

Forecast

Request

Acception

Fig. 6 Revenue management process
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YesProfitability

Check
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Update of
Forecast
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Request
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Schedule

Booking
Request

No

Fig. 7 Concept of revenue management simulation

346 P. Bartodziej et al.



X
p2Pr

f Pð Þ � �r þ ~�r for r 2 S (11')

Especially, the running time for solving the LP’s becomes unacceptable high for
problem instances of larger size. Thus in these realistic and time-critical en-
vironments additional means to reduce the size of the LP-master problems should be
applied. Here one could reduce the number of paths in the search by eliminating the
allowable number of legs per path. Another option would be to decompose the
network. Then the first step in the revenue management decision would be to design
every request to a suitable sub network.

Themeasurement of the quality of a (final) solution is quite difficult. An obvious
measure would be the ratio between the yield potential and the realized yield. Yet,
since it is a dynamic process and not a static problem, there is no natural definition
for the maximum yield potential. Here, the value of the optimal solution of the
planningmodel can only be an estimation or rational substitute. Using this value as a
reference, one can observe rather significant differences among the different stra-
tegies with respect to quality.

In Fig. 8 we show the trade-off between quality and computational efficiency
with respect to batching. Here, we display results for the following strategies

– sequential evaluation/no batching
– k-batching with blocksize “k”, k=5,10,100

The results were obtained for a scenario generated with γ1=5, γ2 = 1 andΔ=0.1
leading to 2,533, 6,521 and 2,206 requests for problems P10, P64 and P79,
respectively.

The contribution to profit is given as percentage of the contribution to profit of
the optimal solution to the associated planning model. We have divided the total
running time for a run by the total number of requests and compare the com-
putational efficiency of the different approaches on the basis of processing time per
request (given in CPU-ms). It turns out that the behavior is not monotone over all the
examples. Yet, for every example/problem instance one can establish that there exist
different “optimal batch sizes” for both measures, and thus an interval of effective
batch sizes can be identified.
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Fig. 8 Comparison of implementation strategies
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6 Final remarks

As cargo airlines (and shipping lines for this matter as well) are becoming in-
creasingly under pressure, revenue management could help to improve the per-
formance significantly. One cargo airline was able to increase yield by 5%, while the
average industry yield fell by 15% in the same period, only by segmenting their
products (express vs. standard) and reserving capacity on fixed routes for higher
yield products (see Pompeo and Sapountzis (2002)). Assuming that even more
intelligent cargo revenue management systems based on dynamic O&D assign-
ment, as described above, could increase average yield by 1%, the industry could
generated additional bottom-line profits of more than US $300 million p. a.

However, to be practical, the necessity to generate answers for booking requests
in near real time is a demanding task for its own. For a leading cargo airline the
number of O&D’s can easily reach more than 50.000 different O&D’s (incl.
product categories), and over a week hundreds of individual bookings could be
requested for a specific O&D. Not only is the use of extremely fast (constrained)
shortest path algorithms which first try to use itineraries which are already in the
solution an absolute must, moreover, strategies to combine single bookings into
blocks which are then evaluated in one iteration seem to be a promising strategy.

After all one can say that using these advanced algorithmic ideas and high
speed computers, O&D revenue management based on mathematical planning
programs could be(come) feasible in practice and significantly improve the
performance of cargo airlines (even if O&D management is only applied to a sub-
set of their overall O&D’s and booking requests).

Acknowledgements We want to thank two anonymous referees for their valuable comments on
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L. H. Lee . E. P. Chew . M. S. Sim

A heuristic to solve a sea cargo
revenue management problem

Abstract In this paper, we will introduce a heuristic to solve a single leg revenue
management problem with postponement, arising from the sea cargo industry.
Based on previous work, it was shown that the optimal policy to allocate the
capacity of the ship is a threshold policy. Based on the sample average
approximation method, we formulate a mixed integer linear programming problem
to determine the stationary threshold policy. A heuristic (known as the perturbation
approach) is proposed to solve the problem. From the numerical result, it is shown
that our approach performs better than some of the methods used to solve the
mixed-integer programming problem.

Keywords Sea cargo . Revenue management

1 Introduction

Recently, many countries are reviewing the regulatory system for liner shipping.
These countries include Australia, Canada, the European Union, Japan, South
Korea and the United States (The World Shipping Council 2000). One significant
event was the amendment of the Ocean Shipping Reform Act (OSRA) by the
United States in 1998.

The change gives more legal freedom to negotiation and provision of ocean
transportation services in the United States, hence bringing the business
relationship between the carriers and the shippers to a new dimension. For
example, the United States Department of Agriculture (2001) reported that the
contracts for transportation of agricultural product are no longer simply volume
discounts, but increasingly contain negotiated and tailored service provisions. This
is also observed in other trade areas (see Federal Maritime Commission (2001) for
further detail). As a result of the amendment, Federal Maritime Commission (2001)
reported that, there is at least a 200 percent increase in the number of service
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contracts being signed. The number of service contract filed is expected to increase
further as Federal Maritime Commission recently agreed to allow Non-vessel-
operating common carriers (NVOCCs) to sign confidential contacts with their
shipper customers in December 2004.

Motivated by a particular practice in the sea cargo industry, a revenue
management model for the carrier is proposed in our working paper (Lee et al.
2005). We have obtained some structural results on the problem and proved that the
optimal policy to allocate the capacity of the ship is a threshold policy. To
determine the threshold policy, a mathematical model will be presented here in
Section 2. In Section 3, an efficient approach to solve the problem will be proposed.
Lastly, some numerical results will be presented in Section 4.

2 The sea cargo revenue management model

2.1 Revenue management

The airline industry in the United States started applying revenue management in
the 1970s after deregulation of air transportation. With revenue management, the
airline carriers have efficiently allocated the airlines seats such that there are
enough seats reserved for the full-fare customers arriving at a later time while the
remaining available seats are opened to the discount-fare customers. Following the
successful stories from the airline industry, revenue management is being applied
in other transportation sectors. Kleywegt (2002) presented two models; Contact
planning and Booking control, which will help the carriers to determine the optimal
strategy to allocate the shipping capacity. The Contact planning model is meant for
the carriers to make long-term planning. Given the economical situation and the
available capacity on certain voyages, the model seeks to determine a contract that
maximizes the carriers’ return. With the inputs from the Contract planning model,
the Booking control model is used for short-term allocation of capacity in the ship.
Pak and Dekker (2004) formulated the cargo revenue management as a multi-
dimensional on-line knapsack problem. They showed that a bid-price acceptance
policy is asymptotically optimal if demand and capacity increase proportionally
and the bid-prices are set correctly.

2.2 Problem description

Often, in service contracts, the carrier and the shipper will sign an agreement
stating a specific number of containers for shipment over a period of time. This
amount is known as the Minimum Quantity Commitment (MQC). The carrier will
reserve the capacity for those shippers who he/she has signed a service contract
with. It is assumed that the reserved capacity is constant here. The remaining
capacity of the ship will be opened for booking.

Due to the uncertainty in the demand, the number of containers to ship is
sometimes more than the MQC, especially during the peak season. We shall call
these additional containers from the contractual shippers as contractual containers
here. Furthermore, the rate for a contractual container is similar to the rate stated in
the service contract.
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At the same time, the carrier will also receive orders from shippers whom have
not signed any contract with the carrier. These shippers have urgent shipments to
make and are generally willing to pay a higher price than the contractual customers
for the same amount of capacity. The containers from these shippers will be termed
as ad hoc containers here. From the perspective of the carrier, the ad hoc containers
will be preferred. However, the carrier must deliver the ad hoc containers in the
earliest possible time. As for the contractual containers, the carrier has the flex-
ibility to postpone the delivery to a later date as long as they are delivered to the
destination by the agreed date.

Currently, the carrier will accept any incoming containers in the ship arriving at
the port. When the ship’s capacity runs out, the contractual containers will be
allocated to the next ship arriving at the port until its capacity runs out whereas the
ad hoc containers will be rejected. This policy will be termed as “zero-threshold”
policy here. To better manage the capacity, Lee et al. (2005) introduced a revenue
management model.

The revenue management model will be used to decide whether a container
(both contractual and ad hoc) should be accepted. If a contractual container is
accepted, the model will also determine whether it should be postponed to the next
shipment.

In our problem, without loss of generality, we assume that the ship will make a
weekly voyage and the carrier has to make a decision to accept or reject the arriving
containers (contractual or ad hoc) for that day by the end of each day. Hence, the
departure period (i.e. the time interval between the departure of ship from the port)
is a week and each departure period will have seven decision periods (i.e. the
carrier has to make decision every day). Ship 1 refers to the ship leaving the port at
the end of the current departure period while ship 2 refers to the ship leaving the
port at the end of the next departure period. Furthermore, we are only considering a
single-leg problem here.

We will also like to point out that the term contractual container collectively
refers to all orders from contractual shippers requesting for more capacity.
Depending on the negotiation between them, each service contract will carry
different rate for the same capacity. Although grouping all shippers with service
contracts together does not accurately model the problem, it is reasonable to do this
based on the following reasons. Firstly, the difference in rate between two different
contractual customers is relatively small, compared to the difference between any
contractual customer and an ad-hoc customer. Hence, the rate of an ad hoc
container will cause a greater impact on the revenue of the carrier. Secondly, the
decision made by the carrier when any requests to ship contractual containers
arrive, is distinctly different from the decision made when some requests to ship ad
hoc containers arrive.

Since the ad hoc container generates higher revenue, it is optimal to accept as
many ad hoc containers as possible. As for the contractual containers, they may be
accepted as long as the remaining capacity in the ship does not exceed a threshold
value. Let the threshold values for allocation of contractual containers in ship 1 and
2 be θ1

t,k and θ2
t,k for the tth decision period of kth departure period. The index t is

numbered backward so that decision period 1 corresponds to the end of the
departure period. The following properties of the threshold values are also obtained
in the working paper (Lee et al. 2005):
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– For every departure period, θ1
1,k=0.

– For the same departure period, θ1
t,k≥θ1t−1,k.

– For the same departure period, θ2
t,k is constant for all decision period.

It will not be practical to implement the threshold policy as the number of
departure period is large. Hence, a stationary threshold policy, regardless of the
departure period:


N1 ; 

N�1
1 ; . . . ; 
t1; . . . ; 


1
1; 
2

 �
is desirable for practical application.

Arapostathis et al. (1993) showed that there exists a stationary policy that is
discount optimal for all discount factors sufficient close to 1 and is also optimal for
average revenue criterion. This is true for problem with a finite state and action
space. For our problem, the state space may be large but is bounded by the
maximum remaining capacity of the ship. Similarly, the action space cannot be
greater than the maximum remaining capacity of the ship. Based on this argument,
it is reasonable to use a stationary threshold policy, independent of the departure
period when the number of departure period is very large. The determination of the
stationary threshold policy is not trivial as there is no closed form solution. We will
introduce some heuristic methods to find a good threshold policy.

2.3 The stationary threshold problem

The revenue management problem considered here has many departure periods and
each departure period will consist of a number of decision periods. This makes the
computation of expected revenue difficult and hence it is not easy to determine the
threshold policy for our problem. To solve this, we generate the ad hoc and contractual
container demands for (M+1) departure periods. Given these demands, we formulate a
deterministic optimization problem to determine the best stationary threshold policy.
This method is similar to the SAA method introduced in Shapiro (2001). Denote

S–Maximum capacity of the ship
N–Length of a departure period
t–Index for each decision period
k–Index for each departure period
xt,k–The remaining capacity of ship 1 at tth decision period of kth departure period
yt,k–The remaining capacity of ship 2 at tth decision period of kth departure period
At,k–The number of ad hoc containers arrived at tth decision period of kth

departure period
Ct,k–The number of contractual containers arrived at tth decision period of kth

departure period
βAC
t,k –The number of ad hoc containers accepted at tth decision period of kth

departure period when there are A ad hoc and C contractual containers
requested to be transported

λAC
t,k –The number of contractual containers accepted in ship 1 at tth decision

period of kth departure period when there are A ad hoc and C contractual
containers requested to be transported
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ρAC
t,k –The number of contractual containers accepted in ship 2 at tth decision

period of kth departure period when there are A ad hoc and C contractual
containers requested to be transported

r–The ratio of the revenue of one ad hoc container to one contractual container

The following optimization Problem 1 is obtained:

Problem 1

max

N1 ...


1
1; 
2

1

M þ 1

XM
k¼0

Rk

where Rk

PN
t¼1 �t;k � r þ λt;k þ �t;k k > 0PN
t¼1 �t;k � r þ λt;k k ¼ 0

�
�t;k � At;k

�t;k � xt;k
(1)

λt;k þ �t;k � Ct;k

λt;k þ �t;k � zt;k þ yt;k � 
2
Ct;k � λt;k � �t;k � �1t;k � S 0

zt;k þ yt;k � 
2 � λt;k � �t;k � 1� �1t;k
� � � S 0

λt;k � zt;k
�t;k � yt;k � 
2

9>>>>>>=>>>>>>;
k > 0 (2)

λt;0 � Ct;0

λt;0 � zt;0
Ct;0 � λt;0 � �1t;0 � S0
zt;0 � λt;0 � 1� �1t;0

� � � S0
9>>=>>;k ¼ 0 (3)

zt;k � 0
zt;k � xt;k � �t;k � 
t1
zt;k � �2t;k � S 0

zt;k � xt;k þ �t;k þ 
t1 � 1� �2t;k
� � � S 0

(4)
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xt;k ¼
S k ¼ M ; t ¼ N

y1;kþ1 ��1;kþ1 k < M ; t ¼ N

xtþ1;k � �t;k � �t;k otherwise

8><>:
yt;k ¼

S k > 0; t ¼ N

ytþ1;k � �t;k otherwise

� (5)


11 ¼ 0

2 � 
t1 � 
t�1

1 8t > 1

t1 2 0; S½ 


2 2 0; S½ 


(6)

zt,k is equivalent to (xt,k−βt,k−θ1t )
S ′> S

The allocation of ad hoc and contractual containers by nested threshold
policy is described in constraint sets Eq. 1–4. Constraint set Eq. 1 describes the
allocation of ad hoc containers while constraint sets Eq. 2–4 consider the
allocation of contractual containers. As it is assumed here that the carrier will
stop operating after the last departure period (i.e. k=0), no contractual containers
will be postponed when k=0. This explains why a different constraint set Eq. 3
is being used when k=0. Constraint set Eq. 4 is added in to ensure that the
maximum allocated capacity for contractual containers in ship 1 are non-
negative. The binary variables (δt,k

1 and δt,k
2 ) and the constant S′ are also

introduced at each decision period to model the nested allocation of contractual
containers on both ships.

δt,k
1 determines whether all contractual containers are being accepted at the

tth decision period of kth departure period. δt,k
2 states whether any contractual

containers will be allocated in ship 1. When δt,k
1 =0, it means that all

contractual containers are being accepted at the tth decision period of kth

departure period. If δt,k
2 =0, no contractual containers will be accepted in ship 1

as zt,k=0.
Constraint set Eq. 5 shows how the remaining capacity in ship 1 and 2 will be

changed as we move from one decision period to the next and constraint set Eq. 6
includes the monotonous property between the threshold values. Although the
container allocation in each ship (βt,k, λt,k, ρt,k) and the threshold values (θ1

t , θ2)
should be discrete for completeness, we relax this restriction here. This is justified
by the fact that the capacity of a container ship is usually very large (above 6000
TEU) and hence the effect of rounding off the container allocation to the nearest
integer becomes insignificant.

For a stationary threshold problem of k departure periods with t decision
periods each, there are 2kt binary variables. It is computationally inefficient to
solve the problem with the branch-and-bound algorithm when k or t is large. We
will introduce a more computationally efficient heuristic to solve the mixed integer
programming problem in Section 3.

356 L. H. Lee et al.



3 The perturbation approach

3.1 The general idea

3.1.1 Consider

Problem 2

maxC1X1 þ C2X2

s:t: A1X1 þ A2X2 þ BY � b
X1 � 0
X2 � 0
Yj 2 0; 1f g j ¼ 1; . . . ; p

where A1 is am×nmatrix,A2 is am×n′matrix,B is am×pmatrix,C1 is a n component
row vector, C2 is a n′ component row vector and b is a m component column vector.
Due to Y, the optimization problem cannot be solved efficiently. Suppose that each Yj
is arbitrary fixed to yj

i at current iteration i, the resulting problem

Problem 3

maxC1X1 þ C2X2

s:t: A1X1 þ A2X2 � b� BY i

X1 � 0
X2 � 0
Y i
j ¼ yij j ¼ 1; . . . ; p

is a linear optimization problem and considered a relatively “easy” problem.
Let z* and z*Y 1 be the optimal objective value of Problem 2 and 3, it is understood

that z* � z*Y i. Suppose that X1
i is the optimal solution at i th iteration for Problem (3)

with Y i, if we could obtain Y i+1 such that X1
i is also feasible at (i+1)th iteration,

then z*Y i� z*Y iþ1. We will explain in the next section on how this idea can work in our
problem and show how Y i can be determined so that z*Y i can be improved as the
iteration i continues.

3.2 The application of the perturbation approach to our problem

Given the demand data (At,k and Ct,k) and the current binary variables (δt,k
1 and δt,k

2 ) at
each decision period, it is relatively easy to obtain the corresponding optimal
threshold policy (θ1

N, ..., θ1
1, θ2) from a commercial linear programming optimizer

such as ILOG CPLEXsoftware. As the optimal solution for a linear programming
problemmust be an extreme point, at least one of the inequality constraints is binding.
In this problem, the binding constraints may help to improve the current solution.

Take for example, if δt,k
1 =0 and Ct,k=zt,k+yt,k−θ2, it means that exactly Ct,k

contractual containers are accepted and all the allocated capacity for contractual
containers in both ships (i.e. zt,k and yt,k−θ2) is utilized. Suppose that if the value of
δt,k
1 is changed to 1, the current solution is still feasible. Furthermore, a better
solution may be obtained when the problem is re-solved by the linear programming
optimizer, with δt,k

1 =1.
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An intelligent mechanism is next introduced to decide which binary variables
should change at each decision period. Given the current threshold policy, if we
perturb one of the threshold values, some binary variables may be changed as they
restrict the perturbation of the threshold value.

Using the same example above, the capacity allocated for contractual container
will be reduced if θ2 is perturbed up. Hence, it is most likely that not all contractual
containers arrived (i.e. Ct,k) will be accepted. However, δt,k

1 =0 restricts the
perturbation of θ2 as it stipulates that all incoming contractual containers will be
accepted. If the value of δt,k

1 is changed to 1, a better solution may be found.
Essentially, by changing δt,k

1 to one will add S′ to the right-hand-side of

Ct;k � λt;k � �t;k � 0

so that the new constraint is Ct,k−λt,k−ρt,k≤S′. This means that the total number of
contractual containers accepted can be less than Ct,k and will allow θ2 to perturb up
further. On the other hand, if δt,k

1 =1 andCt,k=zt,k+yt,k−θ2, it is not required to change
any binary variables when θ2 is perturbed up. This is because no more than zt,k+yt,
k−θ2 contractual containers will be accepted in this case. It is noted that our objective
is to use the perturbation of the threshold value to determine which binary variables
should change. After the binary variables are changed, the problemwill be re-solved
by the linear programming optimizer and a new threshold value will be determined.

The special relationship between the threshold values and the binary variables
allows us to define a more efficient approach to solve the problem. Perturbation is
introduced into the problem via the threshold value. It propagates to other decision
period through the change in the total number of container accepted. As a
consequence, some of the binary variables in the problem will be updated and a
new linear programming problem is obtained and solved. This process will be
repeated until no change in binary variables is encountered. It is emphasized that
the procedure is used to select which binary variables to change at each iteration.
After the binary variables are changed, the threshold Problem 1 will then be re-
solved and the threshold value may or may not change.

It is noted that the perturbation approach will obtain a local optimal solution for
the stationary threshold problem. This is because, the stationary threshold problem is
bounded as the capacity of both ships is not greater than S and the value of S is finite.
Furthermore, the value ofM (i.e. the number of departure period considered here) is
also finite. Since the threshold values are still feasible after the binary variables are
changed, the new solution obtained for the next iteration will not be worse than the
solution for the current iteration. However, as the stationary threshold problem is not
concave, it is not guaranteed that the final solution is globally optimal.

3.3 The general algorithm

Before we describe the algorithm for the perturbation approach, define

δbest—the vector that represent δt,k
1 and δt,k

2 at each decision period that give the
highest revenue, up to the current iteration

δgood—the vector that represent δt,k
1 and δt,k

2 at each decision period that give the
highest revenue among all the possible perturbations at current iteration
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θbest—the vector that represent θ1
t at each decision period and θ2 obtained by

solving the stationary threshold Problem 1, given δbest

θgood—the vector that represent θ1
t at each decision period and θ2 obtained by

solving the stationary threshold Problem 1, given δgood

revenuebest—the objective value obtained by solving the stationary threshold
Problem 1, given δbest

revenuegood—the objective value obtained by solving the stationary threshold
Problem 1, given δgood

Algorithm 1 Main perturbation

1. Randomly generate a stationary threshold policy and determine the correspond-
ing vector, δbest.

2. Given δbest at each decision period, solve the stationary threshold Problem 1 and
let the objective value obtained be revenuebest. Obtain the vector θbest.

3. (a) With the exception of θ1
1, perturb a threshold value while the other threshold

values remain unchanged. Determine the change in δt,k
1 and δt,k

2 for every
departure period. Solve the resulting stationary threshold Problem 1 with a
commercial linear programming optimizer to obtain the new threshold
values and objective value.
Repeat the procedure for other threshold values. It is noted that each
threshold value can be perturbed in two directions (i.e. up and down) hence
there are 2N stationary threshold problems to be solved at this step.

(b) Among all the perturbations done, select the perturbation that gives the
current best improvement in revenue and denote its revenue, binary
variables and threshold value obtained as revenuegood, δ

good and θgood.
4. If there are no improvement (revenuegood≤ revenuebest), terminate. Else let

�best ¼ �good


best ¼ 
good

revenuebest ¼ revenuegood

and go to step 3.
Algorithm 1 shows the steps taken in the perturbation approach. The reader is

referred to our working paper for the detailed procedures to determine the change
in δt,k

1 and δt,k
2 for every departure period. revenuegood will record the highest

revenue among all possible perturbations performed in step 3. The algorithm will
proceed to the next iteration if revenuegood is higher than revenuebest, the highest
revenue obtained till the current iteration.

4 Numerical result

The following cases in Table 1 are run to illustrate the usefulness of the
perturbation approach. The maximum capacity of each ship, S is 200 and the length
of a departure period, N is 7. The value of r used is 5. The demand distribution is
uniformly distributed with a standard deviation of 2 units. We consider the arrival
of containers (ad hoc and contractual) at three levels: low (five containers per
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decision period), medium (15 containers per decision period) and high (25
containers per decision period). Three cases are omitted as the threshold policy will
not cause any impact when the total mean number of containers arrived per
departure period is less than S. Hence, only six cases will be studied here.

4.1 How optimal is the perturbation approach?

We will first like to compare the solution of the perturbation approach with that
obtained from the CPLEXsolver. It is known that it may not be possible to solve a
big problem with the branch-and-bound algorithm. Hence, we will only use small
problems with five departure periods each. Their results are presented in Table 2.
For example, problems SP1_a-SP1_e in Table 2 are instances of demands generated
over the five departure periods for case 1.

The starting threshold policy for the perturbation approach is obtained from the
random search method. For each problem, the random search method randomly
generates 50,000 threshold policies (which obey the monotonous property) and
chooses the one that gives the best solution. The result obtained by the starting
threshold policy is also given in the tables. For more information on the
implementation of the random search method, the reader is referred to our working
paper. It is observed that the perturbation approach reaches the optimal solution 27
times out of the 30 problems ran and the range of solution found is at least 98%
within the optimal solution.

4.2 Comparison of the methods under time-constraint

In the next experiment, we will evaluate its performance under limited
computational time. The algorithm will be terminated when the time limit is
reached. Case 1 and 2 will be considered here. For each case, ten test problems with
100 departure periods each will be used. For each test problem, At,k and Ct,k at each
decision period will be generated based on the parameters in Table 1. Table 3 shows
the results obtained when the time limit is set at 1 hour. For example, problems
BP1_A to BP1_J are the ten test problems for case 1. In Table 3, the starting
threshold policy for the main perturbation approach is either the zero-threshold
policy or obtained from the genetic algorithm.

We use a real-coded steady state genetic algorithm to determine the threshold
values here. The typical chromosome C for this problem can be represented as:

C ¼ 
N1 ; . . . ; 

t
1; . . . ; 


1
1; 
2

 �

Table 1 The various scenarios tested at N=7 and S=200

Case 1 2 3 4 5 6

Mean demand of ad hoc container (per decision period) 5 15 15 25 25 25
Mean demand of contractual container (per decision period) 25 15 25 5 15 25
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An initial population of chromosomes will be randomly generated and only
chromosomes that obey the monotonous property (as described in constraint set
Eq. 6 of problem 1) is accepted. For each accepted chromosome, evaluation will be
performed according to the primitive threshold policy. The population size used
here is 150 and the number of generations run is 15,000.

Under this method, only best two chromosomes will be selected for
reproduction. The parent will undergo crossover to produce a child. BLX-α
(Eshelman and Schaffer 1993) will be used to obtain a crossover child from the two
parents. Suppose that C1=(c1

1, . . . , cn
1) and C2=(c1

2, . . . , cn
2) are the two chromosomes

that have been selected for crossover, the resulting child is H=(h1, . . . , hn) where hi
is a randomly generated number in the interval

cmin � I � �; cmax þ I � �½ 
 such that cmin ¼ min c1i ; c
2
i

 �

Table 2 Average revenue obtained from small problem (case 1–6)

Problem Optimal solution Main perturbation approach Random search

SP1_a 340.8 340.8 337.1
SP1_b 349.6 349.6 340.2
SP1_c 348.0 348.0 345.6
SP1_d 339.2 339.2 338.9
SP1_e 350.4 350.4 346.0
SP2_a 606.4 606.4 597.3
SP2_b 605.6 605.6 601.2
SP2_c 626.4 626.4 619.8
SP2_d 607.8 607.8 605.4
SP2_e 630.4 630.4 626.7
SP3_a 612.0 612.0 611.5
SP3_b 627.2 627.2 627.1
SP3_c 628.0 628.0 620.5
SP3_d 616.0 616.0 613.2
SP3_e 622.4 622.4 618.8
SP4_a 913.6 913.6 908.2
SP4_b 895.2 892.4 850.5
SP4_c 905.6 905.6 905.1
SP4_d 901.6 899.4 888.9
SP4_e 899.2 899.2 890.6
SP5_a 877.6 877.6 865.2
SP5_b 893.6 893.6 887.8
SP5_c 888.8 888.8 879.5
SP5_d 882.4 882.4 880.0
SP5_e 914.4 914.4 909.7
SP6_a 904.0 904.0 799.9
SP6_b 903.2 902.6 891.5
SP6_c 912.8 912.8 908.6
SP6_d 907.2 907.2 900.1
SP6_e 887.2 887.2 885.3
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cmax ¼ max c1i ; c
2
i

 �
I ¼ cmax � cmin

A non-uniform mutation (Michalewicz 1992) will be performed on the child
after crossover. If the chromosome is C=(c1, . . .cn) and ci 2 [ai, bi]is the gene to be
mutated, then the new gene c′i, under this operator is:

c0i ¼
c1 þ� t; bi � cið Þ if � ¼ 0
c1 �� t; ci � aið Þ if � ¼ 1

�

� x; yð Þ ¼ y 1� r 1� t
gmaxð Þb

� �
where

t is the current generation
gmax is the maximum number of generations
τ is a random number which may have a value of zero or one
r is a random number from the interval [0, 1]
b is a parameter that describes the degree of dependency on the number of

iterations

Table 3 Average revenue obtained for various methods

Problem EMSR
heuristic

Branch-and-
bound

Genetic
Algorithm

Main perturbation
approacha

Main perturbation
approachb

BP1_A 316.5 N.s. 339.4 340.1 322.1
BP1_B 316.2 N.s. 339.2 341.6 335.2
BP1_C 319.5 N.s. 344.4 344.6 336.4
BP1_D 317.9 N.s. 341.1 343.7 336.5
BP1_E 313.9 N.s. 342.4 355.3 341.4
BP1_F 315.9 N.s. 305.3 373.1 322.1
BP1_G 318.6 N.s. 318.0 335.2 319.2
BP1_H 321.1 N.s. 327.1 336.1 331.4
BP1_I 318.6 N.s. 318.7 336.5 321.0
BP1_J 319.2 N.s. 320.1 341.4 321.2
BP2_A 594.9 586.5 618.5 620.7 619.2
BP2_B 596.6 580.5 618.5 623.4 620.1
BP2_C 593.5 593.9 618.4 618.6 614.4
BP2_D 597.6 591.3 623.6 626.7 622.0
BP2_E 596.4 592.4 620.4 620.8 612.0
BP2_F 596.4 580.2 603.6 619.2 611.4
BP2_G 594.6 N.s. 597.0 618.6 607.5
BP2_H 596.5 593.9 599.3 614.4 605.6
BP2_I 599.0 N.s. 602.7 619.5 618.9
BP2_J 597.1 N.s. 610.1 612.0 610.0

a Starting threshold policy is obtained from the genetic algorithm
b Starting threshold policy is zero-threshold policy
N.s. denotes no feasible solution found
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Evaluation on the child will next be performed. If the result is better than the
worst member in current population, the child will replace the worst member in the
next generation.

Herrera et al. (1998) performed experiments on various real-coded genetic
algorithms and concluded that BLX-α (particularly α=0:5) is among the best
crossover operators for real-coded genetic algorithm. They also pointed out that non-
uniformmutation is very appropriate for real-coded genetic algorithm. The readers are
referred to our working paper for further discussion on the implementation of the
genetic algorithm.

It is seen from the table that the CPLEXsolver fails to give a feasible solution
within the time frame for most problems. When the threshold policy from the genetic
algorithm is used as the starting solution, the result obtained is better than the one with
the zero-threshold policy as the starting solution. From the result obtained by genetic
algorithm, it is observed that the solution improves when the main perturbation
approach is used. Apart from this, it is also observed that the perturbation approach
obtains better solution than the genetic algorithm for more than 50%of the problems
ran even when the zero-threshold policy is used as the starting solution.

Our approach is also compared with a variant of the EMSR heuristic (Belobaba
1987), a popular heuristic used in airline revenue management. The EMSR
heuristic determines the threshold value based on the estimated number of full-fare
customers arriving in future. The threshold value can be obtained:


t1 ¼ SA tð Þ
Pt SA tð Þð Þ ¼ 1

r

where

Pt Dð Þ is the probability of receiving D or more ad hoc containers from tth

decision period to departure time and is determined based on At,k for the
100 departure period

SA(t) is the capacity reserved for ad hoc containers at tth decision period

To simplify the implementation of the EMSR heuristic in our problem, the
threshold value of ship 2 is fixed at θ1

N. Furthermore, θ1
1 is fixed at the value of zero as

it is proven optimal in our working paper. The result is also shown in Table 3.
We will like to stress that the perturbation approach adopts a different strategy

to obtain the threshold policy. Currently, the genetic algorithm and the random
search method determine the threshold policy directly while the proposed approach
searches for the threshold policy based on the binary variables, δt,k

1 and δt,k
2 . The

perturbation approach uses a selective mechanism to choose the binary variables
for change and indirectly obtain a better threshold policy as the iteration proceeds.
From the numerical result, it is reasonable to deduce that the strategy taken by our
approach is more effective. Due to space constraint, other numerical results are not
presented in this paper. The reader is referred to our working paper for details.
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Marta Anna Krajewska . Herbert Kopfer

Collaborating freight forwarding enterprises
Request allocation and profit sharing

Abstract The paper presents a model for the collaboration among independent
freight forwarding entities. In the modern highly competitive transportation branch
freight forwarders reduce their fulfillment costs by exploiting different execution
modes (self-fulfillment and subcontraction). For self-fulfillment they use their own
vehicles to execute the requests and for subcontracting they forward the orders to
external freight carriers. Further enhancement of competitiveness can be achieved
if the freight forwarders cooperate in coalitions in order to balance their request
portfolios. Participation in such a coalition gains additional profit for the entire
coalition and for each participant, therefore reinforcing the market position of the
partners. The integrated operational transport problem as well as existing
collaboration approaches are introduced. The presented model for collaboration
is based on theoretical foundations in the field of combinatorial auctions and
operational research game theory. It is applicable for coalitions of freight
forwarders, especially for the collaboration of Profit Centres within large freight
forwarding companies. The proposed theoretical approach and the presented
collaboration model are suitable for a coalition of freight forwarding companies
with nearly similar potential on the market.

Keywords Collaboration . Freight forwarder . Profit sharing . Multi-agent auction

1 Introduction

In the ongoing globalization process large international freight forwarding
companies are more competitive than small companies due to their wider portfolio
of disposable resources and a higher ranking in the market power structure. The
remedy for the medium- and small-sized carrier businesses is to establish coalitions
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Department of Economics, University of Bremen, Wilhelm-Herbst-Strasse 5,
28359 Bremen, Germany
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in order to extend their resource portfolio and reinforce their market position.
Moreover, the structure of large freight forwarding companies frequently assumes
autonomously operating subsidiaries, that should, however, cooperate in order to
maximize the overall business profit.

The purpose of the cooperation of freight forwarding entities is to find an
equilibrium between the demanded and the available transport resources within
several carrier entities by interchanging customer requests (Kopfer and Pankratz,
1999).

Section 2 presents the request processing at a single freight forwarding entity.
Section 3 introduces the theoretical frame for collaboration modelling. Section 4
investigates the existing models of collaboration in the transportation branch. In
Section 5 we present and analyse a model for the collaboration among freight
forwarding enterprises.

2 Integrated operational freight carrier planning

A great number of enterprises source transportation tasks out by entrusting
independent freight forwarding companies with the execution of the necessary
transport activities. For each transportation task the forwarding company is allowed
to choose the mode of fulfillment, i.e., own vehicles can be used for the execution
of the corresponding entrusted tasks (self-fulfillment) or an external freight carrier
(subcontractor) receives a fee for the request fulfillment (subcontraction).
Independent shipment contracts of different types and specifications are awarded
to the subcontractor for completion. The involvement of the subcontractor can
occur due to two incentives (Chu, 2005). In reality, freight forwarders face demand
fluctuations. When the total demand is greater than the whole capacity of owned
trucks, the logistics managers may consider using outside carriers. Furthermore,
integrating the choice of fulfillment-mode into transportation planning may bring
significant cost savings to the company, because better solutions can be generated
in an extended decision space. This extended problem is known as integrated
operational freight carrier planning.

A customer request is assumed to be a pick-up and delivery request describing a
single transportation demand, which typically results in a transportation process
involving a less-than-truckload packet. The location of the pickup and the location
of the delivery are specified as well as the quantities to be moved. Time windows
for the loading and unloading operations are also declared. In case of relatively
short distances, or in case of a small number of loads per truck, direct transportation
is preferred to establishing expensive hub-spoke systems, involving inventories or
at least reload locations. Therefore, the direct transport from locations of loading to
locations of unloading is assumed.

A freight forwarding company generates its profit from the difference between
the price that the customer is obliged to pay for the request execution and the costs
of request fulfillment. These costs result either from the fulfillment by own
transportation capacity, or from the external processing of orders in consequence of
involving a subcontractor.

In case of self-fulfillment the execution must be planned and the costs can be
optimized by routing and scheduling a fleet of homogenous vehicles with a given
capacity in accordance with the general pick-up-and-delivery-problem with time
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windows (PDPTW). The distance and/or time costs are calculated for the round
trips of all vehicles. The marginal costs of a single request execution are
determined by the additional costs for the used vehicles for the execution of this
request.

In contrast to self-fulfillment, the costs of subcontraction cannot be calculated
independently, but depend on the shipment contract with the involved
subcontractor. The models of integrated operational freight carrier planning
proposed so far incorporate different types of subcontraction. Requests can be
forwarded to the subcontractors independent of each other, on equal terms
(Schmidt, 1994; Greb, 1998). Hence, the freight cost calculation results from
isolated price assessment for each request on the basis of a freight cost function. It
is also possible to forward complete tours, relative to the tours constructed for self-
fulfillment (Savelsbergh and Sol, 1998; Stumpf, 1998). A traditional method of
practical relevance for the subcontraction of less-than-truckload packets, called
freight flow consolidation (FOP), can be also used (Kopfer, 1990, 1992; Pankratz,
2002). For flow consolidation a least cost flow through a given transportation
network under the assumption of request bundling is sought. The costs are
calculated in accordance with a tariff which depends on the distance and/or the
loading weight. With regard to the last two methods of cost calculation for
subcontractor involvement, the marginal costs of a single request execution refer to
the additional transportation costs of the corresponding bundle.

3 Preliminaries for collaboration modelling

Collaboration is a powerful measure to improve the integrated operational freight
carrier planning of cooperating partners. Bruner (1991) defines collaboration in the
following way:

Collaboration is a process of reaching goals that cannot be achieved acting
singly (or, at a minimum, cannot be reached efficiently). Collaboration includes all
of the following elements: jointly developing and agreeing to a set of common
goals and directions; sharing responsibility for obtaining those goals and working
together to achieve those goals, using expertise of each collaborator.

For the purpose of formalized collaboration modelling, we introduce some
aspects of cooperative game theory. In Operational Research Games, apart from
inherent optimisation problems, there arises the natural question of how to allocate
the joint cost/benefit among the individual decision-makers (Fernandez et al.,
2004). Cooperative games address building coalitions as a crucial aspect. The
general problem consists in the analysis of the benefits the players can achieve
creating coalitions, in looking for winning coalition and for allocation of benefits
which could be accepted by the players (Krus and Brunisz, 2000).

A cooperative game with transferable utility (TU game) is described (Slikker et
al., 2005) by a pair (N,v), where N=1,2,...,n denotes a set of players and v : 2N�!<
is the characteristic function, assigning to every coalition S 	 N of players a value
v(S), representing the maximal total monetary reward the members of this group
can obtain when they cooperate. Let v denote the payoff vector v ¼ ðviÞi2N 2 <n ,
specifying for each player i 2 N the benefit vi that this player can expect if he does
not cooperate and x the payoff vector x ¼ ðxiÞi2N 2 <n , specifying for each player
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the benefit xi that the player can expect if he cooperates with the other players
(Hinojosa et al., 2005). An allocation is called efficient if the payoffs to the various
players add up to exactly vðNÞ: v0ðNÞ denotes the value of the characteristic

function if there is no collaboration at all, i.e., v0ðNÞ ¼Pn
i¼1

vi . IðvÞ is defined as the

set of individually rational allocations of the characteristic function v (Borm et al.,
2001):

I ðvÞ ¼ fx 2 <n j
X
i2N

xi ¼ vðNÞ; 8i 2 N : xi � vig:

The set IðvÞ consists of all the payoff vectors with the conditions that the total
reward of all players is equal to the monetary reward of the maximal coalition N
and that the reward of each player is at least as high as it is without collaboration.

Two desirable properties of a game are superadditivity and monotonicity
(Slikker et al., 2005). Superadditivity assures that for any two disjoint coalitions S
and T of players vðSÞ þ vðTÞ � vðS [ TÞ . An important consequence of a
superadditive characteristic function is that it is always attractive for two disjoint
coalitions to form one big coalition rather than to operate separately. A game is
monotonic if the addition of more players will increase the value obtainable, it
means vðSÞ � vðTÞ; 8S � T .

As the players are not primarily interested in the benefits of a coalition, but in
the individual benefits, the allocation of the additional profit is of main importance.
An efficient allocation x 2 <n with the property that xi � vi for all i 2 N is
individually rational, i.e., x 2 IðvÞ . A coalitional game is convex if a player’s
marginal contribution increases if he joins a larger coalition: vðS [ iÞ � vðSÞ �
vðT [ iÞ � vðTÞ , 8S � T .

Next, we give a brief introduction to combinatorial auctions. Auctions
characterise a general form of multilateral negotiations, where participants interact
on the basis of bids (Peters, 2000). Due to complementarities or substitution effects
between different assets, the bidders have preferences not just for particular items
but for sets or bundles of items. For this reason, economic efficiency is enhanced if
participants are allowed to bid on combinations of different assets. The most
obvious problem that bids on combinations of items impose consists of selecting
the set of winning bids. The problem is called the Combinatorial Auction Problem
and can be formulated as an Integer Program (de Vries and Vohra, 2003):

Let N be a set of bidders, M a set of m distinct objects. For every subset S of M
let bjðSÞ be the bid that auction participant j 2 N has announced he is willing to
pay for S. For all j 2 N bjðSÞ is superadditive, which corresponds to the idea that
the goods complement each other. Let bðSÞ ¼ maxj2Nb jðSÞ , xS : 2M ! f0; 1g
and Si ¼ fS 	 M j i 2 Sg . xS ¼ 1 is interpreted to mean that the highest bid on
the set S is to be accepted, whereas xS ¼ 0 means that no bid on the set S is
accepted. In order to determine an optimal set of winning bids we consider the
following optimisation model

max
X
S	M

bðSÞxS (1)
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subject to X
t2Si

x t � 18i 2 M ; 8S 	 M (2)

The constraint Eq. 2 ensures that no object in M is assigned to more than one
bidder.

The seller is interested in choosing an auction design that will do three things
(de Vries and Vohra, 2003):

1. induce bidders to create bids on the basis of their actual evaluations (incentive
compatibility)

2. no bidder is worse off (in expectation) by participating in the auction
3. subject to the two above-mentioned conditions the seller maximizes the

expected revenue.

Auction designs that satisfy these conditions are called optimal.
Gomber et al. (1997) distinguish between four types of auctions:

1. English auction: bids increase until only one bidder is willing to accept the
price, he gets the offered good at the price of the last quote.

2. Dutch auction: the price decreases until the first bidder accepts the price, he gets
the offered good at the current price.

3. First price sealed bid auction: the bidders offer their price separately and then
the best offer is chosen and the corresponding participant gets the good at the
offered price.

4. Second price sealed bid auction (Vickerey auction): it corresponds to the First
price sealed bid auction, but the bidder with the best offer gets the good at the
price of the second best offer.

4 Existing collaboration models in transport logistics

Kopfer and Pankratz (1999) define a groupage system as a logistic interorganisa-
tional system which exchanges information and manages capacity balancing by
using the cooperation between several independent carriers. Groupage systems
enable a request interchange between several forwarding companies to achieve an
equilibrium between demanded and available transport resources. The increased
number of disposable requests for each individual freight forwarder results in
economies of scale. Economies of scope are created due to better capacity
utilisation. An additional advantage results from the considerably lower costs of
arrangement as in case of external processing of orders. A quasi-merger of freight
forwarders to a super-carrier with a central managing entity is not of practical
relevance, thus, the decentralization of the collaboration process is recommended
(Kopfer and Pankratz, 1999). At the first stage each freight forwarder plans the
requests by incorporating self-fulfillment or subcontraction. Only now is the
exchange of requests among collaborating forwarders possible.

A model for freight carriers’ collaboration was proposed by (Schönberger,
2005). Requests are negotiated among freight forwarding entities. In case of
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fulfillment of a request by a collaborating forwarder and according to the approach
of Schönberger, the entire corresponding revenues are simultaneously shifted to the
serving collaboration participant. For the requests that remain unserved an external
carrier service is engaged, i.e., the requests are subcontracted at the spot market.
The main assumption of Schönberger is that the carrier service incorporation on the
spot market is unprofitable, because the charge for each request is higher than the
revenues associated with the request. The sum of the external carrier costs is
distributed uniformly among the participants of the cooperation. Within the usage
of a memetic algorithm, which combines the exploring genetic search and
exploiting local search procedures (hill climbers)(Schönberger, 2005), it is proved
that the cooperation is able to incorporate significantly more requests, contributing
to an increase in the overall profit. The model does not fully support the assumption
that each participant should benefit from this cooperation by enlarging its
efficiency. Instead, as the preservation of the interests of certain carriers cannot be
guaranteed, a 2-step approach is suggested. First, each forwarding entity selects the
requests from their own portfolio as well as from portfolios of the other
participants, leading to maximal profit contributions. Typically, a single request
cannot be served in a profitable way. For this reason, the carrier composes several
requests into routes in order to achieve positive profit contributions. The carriers do
not only specify single requests but bundles of requests that they can serve in a
profitable way. Such a bundle consists of the requests served within one route
(Schönberger, 2005). Thus, not the single requests but the subsets resulting from
bundling of requests are subject to negotiation. The desired subsets of each
forwarder are released. Usually, the most attractive requests are contained in a few
subsets. As only one of conflicting subsets can be executed, an independent
mediator is introduced. Bundle assignment by the mediator is based on the
principles of combinatorial auction. The decision is made with the goal of
minimizing the negative sum of avoided carrier costs. The subset of one freight
forwarder is accepted and all the other subsets including the request are turned
down.

Gomber et al. 1997 present a model of collaboration for transport planning
suitable for a freight forwarder agency with several Profit Centres. Profit Centres
should be autonomous in request acquisition and negotiations of the price for the
request execution with customers. Profit Centres can either fulfill requests with
their own vehicle fleet or forward it to the other Profit Centres on the basis of a
cooperation structure. The coordination mechanisms for collaboration should meet
the following conditions (Gomber et al. 1997):

1. an efficient allocation of requests among Profit Centres
2. no strategic planning, i.e., for each Profit Centre it is profitable to announce the

true assessments
3. the requests generating losses should also be dispatched optimally
4. the costs of communication should be acceptable.

In (Gomber et al., 1997) several models for collaboration based on the multi-
agent-auction-theory are proposed. The types of cooperation models vary
depending on the features of the requests. If the single request forwarding is
concerned, the Vickerey auction is proposed as the dominant strategy. In order to
maximize the probability of getting the request, each participant quotes the
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maximal price for the request, yet providing profit. In case that a request generates
losses, it is assumed that the participants can offer negative bids. Vickerey auction
functions for negative prices in the same manner as for the positive prices. The
bidder is paid for the acceptance of the request the amount of the second “best”
bidder price, hence, generating profit. The payment comes from the offering
participant who has acquired the request. The mechanism of combinatorial auction,
called Matrix auction, is proposed for bundles of requests. In principle, it is also
based on Vickerey auction. Each of the m participants offer the (positive or
negative) prices for all 2n � 1 combinations of n requests. In order to find the
optimal allocation of the requests, a matrix with 2n � 1 columns and m rows is
constructed. Only one matrix-element can be chosen from each column. Referring
to rows, the chosen bundles cannot contain common requests.

5 Proposed model of collaboration

5.1 Description of the collaboration process

Now the profit optimisation and profit sharing of the collaboration among several
freight forwarding entities is considered. Each entity operates autonomously. It can
quote the price for request execution and decide the method of request fulfillment
independently, i.e., each request can be executed by self-fulfillment or by
subcontraction. With regard to each request, irrespective of the mode of fulfillment,
profit or loss can be generated. It results from the difference between the freight
charge received from the customer and the costs of request execution. These costs
correspond to the additional travel costs of the vehicle used in case of self-
fulfillment, or to the payment for subcontracting. Furthermore, it is assumed that
each entity is able to fulfill all the acquired requests within the usage of own
disposable resources: own vehicle fleet or subcontractors.

Each freight forwarding entity defines that subset of requests from the self-
acquired requests that it does not want to offer to collaborating partners. Those
requests are fulfilled within the usage of the own disposable resources: they are
planned in the schedule of the own vehicle fleet or forwarded to subcontractors
while minimizing the resulting freight costs. All the other requests are included in
the collaboration process.

In the collaboration process requests are interchanged among the cooperating
freight forwarders. The costs of communication among partners are not considered.
Furthermore, it is assumed that each collaboration participant announces their true
assessments. There exist incentives for the partners to reveal their true assessments.
On one hand, the collaborating entity aims to receive the bundle it is interested in.
In order to remain competitive, it quotes the minimal possible costs of bundle
execution. On the other hand, it wants to generate profit (or, more precisely, not to
generate losses). Thus, the real costs are revealed. In practice, the partners are often
interconnected to each other by the formalised market structures, e.g. the partners
represent the Profit Centres of one company or holding. In this case, the access to
the real costs and profit of the partner is seldom denied.

The collaboration process consists of three phases: preprocessing, profit
optimisation and profit sharing.
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In the preprocessing phase each partner specifies the lowest costs of fulfillment
for each acquired request that they offer to the collaboration partners. These costs
are assessed for request execution within the usage of own disposable resources,
without participating in the collaboration. It means, the costs of subcontracting and,
if it is possible, the costs of self-fulfillment are calculated and the lower amount is
chosen. This amount is called potential self-fulfillment costs of the request.

In line with the definition, the main assumption for the collaboration of the
freight forwarders is that requests acquired by one partner are allowed to be
fulfilled by another cooperating partner if the collective revenues increase. In the
profit optimisation phase it is aimed to generate a mapping of requests to
collaborating partners. This mapping represents the assignment of requests to the
available partners, such that the profit of the entire coalition is maximized. Hence,
as the price paid by the customers remains constant, the minimal execution costs
for the fulfillment of the offered requests are claimed.

No collaborating participant, except the acquiring enterprise, has to serve
requests that it does not want to fulfill. Partners who intend to take over some
requests bid on these requests or on a set of requests. Thus, each partner defines
bundles of requests it would be able to and wishes to fulfill. For all desired bundles
the enterprise evaluates its costs for the fulfillment of the bundle of requests. These
costs are called the potential fulfillment costs. Moreover, the potential fulfillment
costs have to be specified for each request included in the desired bundles of a
particular enterprise as if it were assigned to it separately. Hence, the potential
fulfillment costs should be obligatorily specified for all the one-element-bundles of
requests for those requests which belong to many-element-bundles considered by a
particular collaboration participant. Furthermore, the potential self-fulfillment
costs of each request are regarded as a bid on a one-element-bundle that is offered
by the acquiring partner itself. The assessments are then revealed and are subject to
an optimisation process.

The set of bundles that assures the lowest serving costs for the entire set of
requests offered by collaborating partners is determined by solving the Integer
Program of the Combinatorial Auction Problem (models 1–2). This set of bundles

Fig. 1 Payment flows for a single request bundle
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assigns all the requests offered by collaborating participants uniquely to one of the
bundles. Provided that a one-element-bundle constructed on the basis of potential
self-fulfillment costs is included in this set, the request is executed by the offering
entity itself. Otherwise, the requests are shifted between partners for execution.

Cooperation is favourable, because the maximal joint profit is always at least as
high as the sum of the profits of the players separately. Now the question arises how
to allocate the joint benefit among the individual partners in a fair way. The
definition of collaboration determines that all freight forwarders should reach at
least such a profit as in the case without collaboration, otherwise they should be
compensated. Thus, the incentives for each enterprise to participate in collabora-
tion are that they can make additional profit as well as the certainty that their profit
in case of operating autonomously is not higher (alternatively loss is not lower)
than the one resulting from the collaboration process. In the profit sharing phase the
profit resulting from fulfillment of each request is divided among the coalition
members. Figure 1 shows the flow of payments for one bundle of requests.

The offering partner holds the payment of the customer freight charge as the
reward for request acquisition. Instead, if the request is shifted to another
enterprise, the offering partner pays for the request execution the amount of the
potential self-fulfillment costs to the coalition. Thus, its financial situation is not
worsened in comparison with the situation without collaboration. The amount of
profit or loss is maintained.

The transfer price is the payment that the serving enterprise receives from the
coalition for bundle fulfillment. In order to set this price, theminimal fulfillment costs
for each single request in the bundle are determined. For each request this
corresponds to the lowest potential fulfillment costs that have been specified by any
partner for the one-element-bundle that contains the considered request. The fulfilling
enterprise is awarded the sum of the minimal fulfillment costs for all the requests
included in the bundle it should execute. As for the fulfilling entity, the costs for the
execution of that bundle can only be equal to or lower than the sum of the minimal
fulfillment costs, the participation in the collaboration can exclusively be profitable
for the fulfilling entity. The total profit amounts to the difference between the
payment the customers offer to the acquiring enterprises and the payment for the
fulfilling of bundles by the serving enterprise. The overall residual profit that has not
yet been absorbed by the offering and serving partners should be divided among the
partners. For one bundle the residual profit consists of the difference between the
potential self-fulfillment costs of the requests in the bundle and the transfer price of
the bundle. The division corresponds to the benefit that each participant offers to the
collaboration and its calculation is based on collaboration advantage indexes. For
offering partners the part of the residual profit they receive is calculated for each
request they have offered and depends on the benefit of exchanging this request. The
collaboration-advantage-index for the offering entity amounts to the difference
between the potential self-fulfillment costs and the minimal fulfillment costs. For
serving partners their part of the residual profit is determined for the bundle they serve
and it depends on the cost reduction that can be achieved by bundling the proper
requests. The collaboration-advantage-index for the fulfilling enterprise is equal to
the difference between the sum of all potential self-fulfillment costs for the requests in
the bundle and the transfer price paid to the serving partner. The residual profit of
each bundle is divided among offering and fulfilling coalition members proportional
to the collaboration-advantage-indexes.
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The formal model of the collaboration process and the proof of satisfying the
main assumptions of the collaboration are presented in the subsequent section.

5.2 Formal statement of the collaboration process

Assume a coalition of m independent freight forwarders P ¼ fP1; :::;Pmg . Each
partner Pk has acquired the set of Nk requests Rk ¼ frk1; :::; rkNk

g . First, each
participant defines the maximal obtainable profit while only using own disposable
resources. Let Fðrki Þ be the freight charge paid by the customer to the acquiring
enterprise for the fulfillment of the request rki . The request portfolio of each freight
forwarder Rk = ðRkþ

v ;Rkþ
sc ;R

k�Þ is partitioned into three disjoint sets Rkþ
v , Rkþ

sc and
Rk� . Requests from the set Rkþ

v are executed by the own vehicle fleet. The set Rkþ
v

is dispatched according to the routing plan denoted as πðRkþ
v Þ . Requests from the

set Rkþ
sc are forwarded to a subcontractor. The costs of execution of the vehicle

scheduling plan refer toCðπðRkþ
v ÞÞ and the execution costs of all requests shifted to

a subcontractor amount to CðRkþ
sc Þ . Rkþ denotes Rkþ

v [ Rkþ
sc and contains all

requests that the freight forwarder does not want to offer to other coalition members.
Rk� incorporates all the requests that are offered to the collaboration partners.

Preprocessing phase For each request rki from the set Rk� the enterprise Pk

defines the potential self-fulfillment costs Cðrki Þ as the minimal costs of execution
by the usage of own disposable resources (self-fulfillment or subcontraction). The
potential profit/loss PRk

i resulting from the execution of a single request rki 2 Rk�

without collaboration would amount to

PRk
i ¼ Fðrki Þ � C ðrki Þ (3)

Hence, the set of requests Rk� of the single non-collaborating freight forwarding
entity Pk generates the profit of

PRk ¼ FðRk�Þ � C ðRk�Þ (4)

with FðRk�Þ ¼ P
rki 2Rk�

Fðrki Þ and CðRk�Þ ¼ P
rki 2Rk�

Cðrki Þ . The overall profit for all

members of the coalition P without collaboration refers to the value v0 of the
characteristic function v

v0ðPÞ ¼
Xm
k¼1

ðPRkÞ (5)

Coalition profit optimisation phase In the profit optimisation phase all the
enterprises offer the requests from their sets Rk� to the coalition. The requests are
then subject to a transfer process between the coalition members, which causes an
updating of the request portfolio of each partner in the coalition. Let the set Rkj

i ,

k 6¼ j denote the transfer of rki from Pk to Pj , i.e., R
kj
i ¼ frki g if rki is transferred
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from Pk to Pj and Rkj
i ¼  else. The updated portfolio of requests R

k
for Pk

should refer to (Schönberger, 2005)

R
k ¼ Rkþ [ ð

[Nj

i¼1

[m
j ¼ 1

j 6¼ k

Rjk
i Þ n ð

[Nk

i¼1

[m
j ¼ 1

j 6¼ k

Rkj
i Þ (6)

It is assumed that only disposable requests are transferred: Rkj
i � Rk� and that

the transfer is unique: Rkj
i \ Rkl

i ¼  , 8j 6¼ l .
Let T be the set of all requests offered to the coalition. The total number of

requests involved into the collaboration process amounts to jT j ¼ Pm
k¼1

jRk�j . Let
BL, L 2 f1; :::; 2jT j � 1g , be a bundle of offered requests. The set of all possible
bundles is denoted as B . For each bundle BL the parameter xLðrÞ is defined,
such that:

xLðrÞ ¼ f 1 if bundle BL contains request r
0 else

(7)

The set of all possible bundles illustrates a pure academic approach. In practice
it is impossible to enumerate all bundles, because for a realistic number of offered
requests, e.g. 100, there exists an astronomic number of 2100 ¼ 1; 27 � 1030
bundles. Therefore, to simplify the combinatorial complexity, only some bundles
are specified by the participants.

Each partner Pk defines its potential fulfillment costs CkðBLÞ for each bundle
BL of requests he wants to fulfill and for all one-element-bundles of requests
included in the many-element bundles he has defined. For bundles that Pk does not
want to fulfillþ1 is assigned to CkðBLÞ . All potential self-fulfillment costs Cðrki Þ
are regarded as potential fulfillment costs Ckðfrki gÞ for one-element-bundles frki g
offered by Pk .

A modified Matrix auction based on a first price sealed bid auction is used to
identify the most profitable bundle combination for the coalition and to assign the
bundles to coalition partners. Assume the binary variable

ykðBLÞ ¼ f 1 if bundle BL is selected to be executed by Pk

0 else
(8)

Let B be the set of optimal request bundles. Then

CðBÞ ¼ minð
Xm
k¼1

X
BL2B

CkðBLÞ � ykðBLÞÞ (9)

s.t. Xm
k¼1

X
BL2B

xLðrji Þ � ykðBLÞ ¼ 1; 8rji 2 T (10)
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are the minimal total costs the coalition can obtain using the collaboration process.
Hence, in accordance with the Matrix auction, such a set of request bundles B is
found that each request is assigned to exactly one partner for execution. This is
guaranteed by constraint Eq. 10. As the prequoted payment from the customer for
each request is constant and cannot be influenced, the minimization of the potential
fulfillment costs for the entire coalition P, which is targeted in Eq. 9, concurrently
guarantees profit maximization for the coalition. Thus, for the characteristic
function v of the TU game between the collaborating partners

vðPÞ ¼
X
rki 2T

Fðrki Þ � C ðBÞ (11)

represents the maximal total monetary reward the members of the coalition can
obtain when they cooperate. In particular v0ðPÞ � vðPÞ . v0ðPÞ ¼ vðPÞ
corresponds to the situation when each coalition member should execute all his
acquired requests on his own. A transfer of requests is reasonable only if it
improves the total profit of the coalition.

Profit sharing phase In the profit sharing phase it must be assured that the
generated solution is acceptable for the partners. Superadditivity is one main
prerequisite to guarantee that in the collaboration process no worsening of the
financial situation for any participant takes place. The overall new profit NPRk is
the profit that the partner Pk achieves by means of the collaboration. Let NPRk�

i

denote the new profit for Pk resulting from offering the request rki 2 T to the
coalition. NPRkþ

L denotes the new profit of Pk for the fulfillment of bundle BL in
result of collaboration. Individually rational allocations of v(P) are defined as:

IðvÞ ¼ fðNPRkÞ; k ¼ 1; :::;m jXm
k¼1

NPRk ¼ vðPÞ;ðaÞ

NPRk � PRk; 8Pk 2 PgðbÞ

(12)

Assume that Rkj
i 6¼ ; k 6¼ j . Each offering enterprise Pk holds the payment

from its customer. If it forwards the request to the coalition, it pays the self-defined
potential self-fulfillment costs for the request execution and gets additionally some
part of the residual profit (RPRk

L ). Hence, the profit increases, respectively, loss
decreases for the offering entity, NPRk�

i ¼ Fðrki Þ � Cðrki Þ þ RPRk
L , i.e., no

worsening of its situation is guaranteed: NPRk�
i � PRk

i ; 8rki 2 Rk� .
Next, the payment received by the enterprise Pk for the fulfillment of bundle

BL; called transfer price TPk
L , is determined. In order to define the transfer price the

Matrix auction based on the first price sealed bid auction is performed, but now
only one-element-bundles, that include only single requests B�

L 2 B are subject to
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consideration. The solution of the models 13–14, that assures the minimal
fulfillment costs of each request rji , should be found.

min
Xm
k¼1

X
B�
L
2B

CkðB�
LÞ � ykðB�

LÞ (13)

s.t. Xm
k¼1

X
B�
L
2B

xLðrji Þ � ykðB�
LÞ ¼ 1; 8rji 2 T (14)

The minimal fulfillment costs of each one-element-bundle B�
L can easily be

determined by

C �ðrji Þ ¼ min
fk¼1;:::;mg

CkðB�
LÞ (15)

The minimal fulfillment costs C�ðrjiÞ of a particular request correspond to the
potential self-fulfillment costs Cðrki Þ of the offering enterprise, if no other coalition
member is able to execute this single request at a lower price than the offering partner.

Bundles specified in B can include requests offered by different participants.
Assume that the bundle BL consists of Ln requests offered by Lm different
participants. One bidder Pk is chosen to serve the bundle. Pk is granted the transfer
price of

TPk
L ¼

X
rji 2BL

C �ðrji Þ (16)

for bundle fulfillment.
The models 13–14 conforms to the models 9–10 with the only exception that

models 13–14 are limited to one-element-bundles. In models 9–10 a bundle BL is
assigned to a coalition partner Pk for fulfillment only if its potential fulfillment costs
CkðBLÞ are not higher than the sum of minimal fulfillment costs of all one-element-
bundles belonging to the assigned bundle BL . Thus, all the bundles BL 2 B satisfy
the assumption Eq. 17.

CkðBLÞ � TPk
L (17)

The new profit for Pk for the fulfillment of BL amounts to

NPRkþ
L ¼ TPk

L � CkðBLÞ (18)

which is always positive. Hence, collaboration cannot be unfavourable for any
fulfilling enterprise.

The residual overall profit of the entire coalition amounts to

RPR ¼
X
BL2B

X
rj
i
2BL

½Cðrji Þ � C �ðrji Þ
 (19)
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For each bundle BL 2 B assume the subcoalition PL that consists of coalition
members offering requests included in the bundle and the coalition member
executing this bundle. The residual profit RPRL , resulting from the collaborative
fulfillment of the bundle BL amounts to

RPRL ¼
X
rji 2BL

½Cðrji Þ � C �ðrji Þ
 (20)

RPRL is divided among members of the subcoalition PL . The collaboration-
advantage-index CAIk is calculated for each Pk 2 PL in the following way.

If Pk offers requests to bundle BL , then its collaboration-advantage-index is
defined as the sum of the differences between the potential self-fulfillment costs
and minimal execution costs for all requests offered by Pk :

CAI�k ¼
X
rki 2BL

½Cðrki Þ � C �ðrki Þ
 (21)

The collaboration-advantage-index for the fulfilling entity Pk is defined as the
difference between the sum of all potential self-fulfillment costs of the requests in
the bundle and the transfer price:

CAIþk ¼
X
rji 2BL

C ðrji Þ � TPk
L (22)

Each subcoalition member Pk 2 PL that participates in the collaborative
execution of the bundle BL holds the individual residual profit that refers to

RPRk
L ¼ CAIk � RPRLPjPLj

j¼1

CAIj

(23)

CAIk � 0; 8Pk 2 PL: Hence, the individual residual profit RPRk
L � 0; 8Pk

2 PL: NPRk ¼ P
BL2B

RPRk
L þ

P
rki 2Rk�

NPRk�
i þ P

BL2B
NPRkþ

L � PKk; 8Pk 2 P and

assumption (12b) is completed for each coalition member. The entire profit of the
coalition, vðPÞ , is divided among collaboration partners, satisfying assumption
(12a). The assumption (12) is maintained, all the partners have incentives to
participate in the coalition.

5.3 Example

Asume a coalition of three freight forwarding entities. In the preprocessing phase
the freight forwarders specify the potential self-fulfillment costs. The following
requests are offered to the collaboration participants:

P1 offers portfolio R1� ¼ fR1
1ðF ¼ 20;C ¼ 30Þ;R1

2ðF ¼ 30;C ¼ 15Þg
P2 offers portfolio R2� ¼ fR2

1ðF ¼ 27;C ¼ 22Þg
P3 offers portfolio R3� ¼ fR3

1ðF ¼ 22;C ¼ 20Þ;R3
2ðF ¼ 17;C ¼ 16Þg
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The request R1
1 generates losses, while all the other requests are profitable for

the acquiring freight forwarders. The overall costs of the coalition partners without
collaboration amount to 103 monetary units. The profit from the request execution
without collaboration is equal to 13 units.

In the profit optimisation phase the freight forwarders specify the potential
fulfillment costs for request execution of the bundles they are interested in. They
specify also the potential fulfillment costs for the particular requests from the
bundles they would like to serve. The costs of +1 are assigned to all the other
combinations. Table 1 presents the specifications of the example.

Next, the optimal combination for the entire coalition is found on the basis of
the Matrix auction. Optimal bundles are:

B1 ¼ fR1
1g ! P1

B2 ¼ fR1
2;R

2
1;R

3
1g ! P3

B3 ¼ fR3
2g ! P1

The costs of request execution in case of collaboration amount to 99 monetary
units. The total additional profit from the cooperation is then equal to four
monetary units.

In the profit sharing phase this profit should be divided among the cooperating
freight forwarders. First, the minimal fulfillment costs of each request from one-
element-bundles are specified:

C�
1ðR1

1Þ ¼ 30 , C�
1ðR1

2Þ ¼ 15 , C�
1ðR2

1Þ ¼ 20 , C�
2ðR3

1Þ ¼ 20 , C�
1ðR3

2Þ ¼ 15
The transfer prices for such bundle execution are as follows:
TP1

1 ¼ 30 , TP3
2 ¼ 15þ 20þ 20 ¼ 55 , TP1

3 ¼ 15
The profit for the fulfilling freight forwarder amounts to:
NPR1þ

1 ¼ 0 , NPR3þ
2 ¼ 55� 54 ¼ 1 , NPR1þ

3 ¼ 0

Table 1 Potential (self-)fulfillment costs

bundle P1 P2 P3

fR1
1g 30 33 +1

fR1
2g 15 +1 25

fR2
1g 20 22 21

fR3
1g 20 20 20

fR3
2g 15 +1 16

fR1
1,R

3
1g +1 52 +1

fR2
1,R

3
2g 35 +1 +1

fR3
1,R

3
2g +1 48 +1

fR1
2,R

2
1,R

3
1g +1 +1 54

fR2
1,R

3
1,R

3
2g 58 +1 +1

fR1
2,R

2
1,R

3
1,R

3
2g +1 +1 70
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The overall residual profit of the coalition is equal to three monetary units. It is
split among the bundles as follows:

RPR1 ¼ 0 , RPR2 ¼ 2 , RPR3 ¼ 1
Next, the specification how it is divided among the freight forwarders takes

place.
The collaboration-advantage-index for B2 is equal to:

CAI�1 ¼ 0 , CAI�2 ¼ 15þ 22þ 20� 15� 20� 20 ¼ 2 , CAI�3 ¼ 0 , CAIþ3 ¼ 2
Then, each participating coalition member holds the singular residual profit that

refers to:
RPR1

2 ¼ 0 , RPR2
2 ¼ 2�2

2þ2 ¼ 1 , RPR3
2 ¼ 1

In case of B3 the residual profit is shared as follows:
CAI�1 ¼ 1 , CAIþ3 ¼ 1 , RPR1

3 ¼ 1
2 , RPR

3
3 ¼ 1

2
Concluding, the overall profit from the collaboration is shared among the

participants: P1 , P2 and P3 are awarded 1
2 monetary unit, one monetary unit and

2 1
2 monetary units.
The profit from the request execution has risen to 17 monetary units. No freight

forwarder has generated a loss in result of collaboration, the sum of generated
profit/loss is either maintained, or the financial situation improves.

6 Conclusions and future work

The collaborative freight carrier planning is of high practical importance in the
modern transportation branch. However, there hardly exist any theoretical frames
for the market actors in the literature. As far as we are aware there is no approach in
the literature for the collaboration of freight forwarders including the choice of
fulfillment mode for each forwarder and the exchange of orders among
independent cooperating partners. The model we propose is based on the
combinatorial auction theory as well as on the operations research game theory. Its
main strength is that each participant generates no losses in consequence of the
collaboration and has a realistic chance to increase its profit by participating in the
coalition. The collaboration-advantage-indexes have been chosen in a way that all
participating coalition members can expect positive payoff-vectors. Therefore each
partner has strong incentives to join and to maintain the coalition they belong to.

The presented collaboration model forms the theoretical frame for request
exchange, profit optimisation and profit sharing for a coalition of freight
forwarding entities. It is assumed that the market forces of all the coalition
members are equal or strongly similar. Therefore, in order to receive empirical
results, it would be recommendable to apply the cooperation mechanism to a
forwarding company with several autonomous nearly similar Profit Centers. In a
practical case study of cooperating Profit Centres we will analyse and investigate
whether the collaboration profit resulting from such a mechanism is high enough to
create an incentive for establishing a coalition. Secondly, the question arises,
whether the potential self-fulfillment costs are easy to assess for the offering
partners and whether the other Profit Centres are willing to execute the requests at
lower costs than the subcontractors from the spot market.

In additional future work the model could be adapted for collaboration
scenarios where not all partners have similar potential on the market. In general, the
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residual profit can be divided among the partners on the basis of different
mechanisms, the proposed collaboration-advantage-indexes can be adapted to
different situations. Especially in the case that the requests offered to the coalition
are most unfavourable for all the partners, it could be possible to increase the
reward for the fulfilling partner while decreasing that of the offering partners. If
transaction costs should be taken into account, some part of the reward should be
transferred to the coalition itself. Anyhow, the proposed model is a useful basis for
developing application-specific profit-sharing mechanisms.
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